JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. POWER ELECTRONICS/POWER ELECTRONICS AND ELECTRICAL DRIVES EFFECTIVE FROM ACADEMIC YEAR 2019- 20 ADMITTED BATCH

R19 COURSE STRUCTURE AND SYLLABUS

I YEAR I SEMESTER

Course Code	Course Title	L	Т	Ρ	Credits
Professional	Power Electronic Converters	3	0	0	3
Core - I					
Professional	Machine Modeling and Analysis	3	0	0	3
Core - II					
	1. Power Electronics for Renewable Energy Systems	3	0	0	3
Professional	2. Smart Grid Technologies				
Elective - I	3.Dynamics of Electrical Machines				
	4. Modern Control Theory				
	1. Power Semiconductor Devices and Modelling	3	0	0	3
Professional	2. Reactive Power Compensation and Management				
Elective - II	3. High Frequency Magnetic Components				
	4. Hybrid Electric Vehicles				
MC	Research Methodology and IPR	2	0	0	2
Lab - I	Machine Modelling and Analysis Lab	0	0	4	2
Lab - II	Power Electronic Converters Lab	0	0	4	2
Audit - I	Audit Course - I	2	0	0	0
	Total Credits	16	0	8	18

I YEAR II SEMESTER

Course Code	Course Title	L	Т	Ρ	Credits
Professional	Advanced Power Electronic Converters	3	0	0	3
Core - III					
Professional	Electrical Drives	3	0	0	3
Core - IV					
Professional Elective - III	1. Industrial Load Modelling and Control	3	0	0	3
	2.Advanced Digital Signal Proceesing				
	3. SCADA Systems and Applications				
	4. PWM Converters and Applications				
Professional Elective - IV	1.Advanced Microcontroller Based Systems	3	0	0	3
	2.Distributed Generation				
	3. Power Quality				
	4. Integration of Energy Sources				
	Mini Project with Seminar	0	0	4	2
Lab - III	Advanced Power Electronic Converters Lab	0	0	4	2
Lab - IV	Electrical Drives Lab	0	0	4	2
Audit - II	Audit Course - II	2	0	0	0
	Total Credits	14	0	12	18

Audit Course I & II

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Mangement by Yoga
- 8. Personality Development through Life Enlightenment Skills

POWER ELECTRONIC CONVERTERS (Professional Core - I)

Prerequisite: Power Electronics

Course Objectives: to prepare the students to

- understand the principle of operation of modern power semiconductor devices. •
- comprehend the concepts of different power converters and their applications •
- analyze and design switched mode regulators for various industrial applications.

Course Outcomes: At the end of the course, the student is able to:

- Choose appropriate device for a particular converter topology.
- Use power electronic simulation packages for analyzing and designing power converters. •

UNIT-I:

AC VOLTAGE CONTROLLERS

Single phase AC voltage controllers with Resistive, Resistive-inductive and Resistive-inductive-induced e.m.f. loads - ac voltage controllers with PWM Control - Effects of source and load inductances -Synchronous tap changers.

Three phase AC voltage controllers – Analysis of controllers with star and delta Connected Resistive, Resistive-inductive loads - Effects of source and load Inductances - Applications & Problems.

UNIT-II:

CYCLO-CONVERTERS

Single phase to single phase cyclo-converters – analysis of midpoint and bridge Configurations – Three phase to three phase cyclo-converters –analysis of Midpoint and bridge configurations – Limitations – Advantages - Applications & Problems - Matrix Converter.

UNIT-III:

SINGLE PHASE & THREE PHASE CONVERTERS

Single phase converters - Half controlled and Fully controlled converters - Evaluation of input power factor and harmonic factor - continuous and Discontinuous load current - single phase dual converters - power factor Improvements Techniques- Extinction angle control - symmetrical angle control, PWM single phase sinusoidal PWM - single phase series converters - overlap analysis - Applications & Problems.

Three phase converters – Half controlled and fully controlled converters – Evaluation of input power factor and harmonic factor - continuous and Discontinuous load current - three phase dual converters - power factor Improvements Techniques- three phase PWM - twelve pulse converters - Applications - Problems - Design of converters.

UNIT-IV:

D.C. TO D.C. CONVERTERS

Analysis of step-down and step-up dc to dc converters with Resistive and Resistive-inductive loads -Switched mode regulators – Analysis of Buck Regulators - Boost regulators – buck and boost regulators - Cuk regulators - Condition for continuous inductor current and capacitor voltage - comparison of regulators – Multi output boost converters – advantages – Applications – Problems.

UNIT-V:

PULSE WIDTH MODULATED INVERTERS

Principle of operation – performance parameters – single phase bridge inverter- evaluation of output voltage and current with resistive, inductive and Capacitive loads– Voltage control of single phase inverters – single PWM – Multiple PWM – sinusoidal PWM – modified PWM – phase displacement Control – Advanced modulation techniques for improved performance – Trapezoidal, staircase, stepped, harmonic injection and delta modulation – Advantages – Applications & Problems.

Three phase inverters – analysis of 180 degree conduction for output voltage And current with resistive, inductive loads – analysis of 120 degree Conduction – voltage control of three phase inverters – sinusoidal PWM – Third Harmonic PWM – 60 degree PWM – space vector modulation – Comparison of PWM techniques – harmonic reductions – Problems.

TEXT BOOKS:

- 1. Mohammed H. Rashid "Power Electronics" Pearson Education Third Edition First Indian reprint 2004.
- 2. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics" John Wiley & Sons Second Edition.

- 1. Milliman Shepherd and Lizang "Power converters circuits" Chapter 14 (Matrix converter) PP- 415-444,
- 2. M.H.Rashid Power electronics hand book -
- 3. Marian P. Kaźmierkowski, Ramu Krishnan, Frede Blabjerg Edition:" Control in power electronics" illustrated Published by Academic Press, 2002.
- 4. NPTEL online course, Power Electronics, by Prof. B. G. Fernandez, <u>https://www.youtube.com/playlist?list=PLA07ACBDE053A8229</u>

MACHINE MODELING AND ANALYSIS (Professional Core - II)

Prerequisite: Electrical Machines

Course Objectives: to prepare the students to

- Identify the methods and assumptions in modeling of machines.
- Recognize the different frames for modeling of AC machines.
- Write voltage and torque equations in state space form for different machines.

Cousre Outcomes: At the end of the course, the student is able to:

- Develop the mathematical models of various AC and DC machines
- Analyze the developed models in various reference frames.

UNIT-I:

Basic Two-pole DC machine - primitive 2-axis machine – Voltage and Current relationship – Torque equation. Mathematical model of separately excited DC motor and DC Series motor in state variable form – Transfer function of the motor - Numerical problems. Mathematical model of D.C. shunt motor D.C. Compound motor in state variable form – Transfer function of the motor - Numerical Problems

UNIT-II:

Linear transformation – Phase transformation (a, b, c to α , β , o) – Active transformation (α . β , o to d, q). Circuit model of a 3 phase Induction motor – Linear transformation - Phase Transformation – Transformation to a Reference frame – Two axis models for induction motor - dq model based DOL starting of Induction Motors

UNIT-III:

Voltage and current Equations in stator reference frame – equation in Rotor reference frame – equations in a synchronously rotating frame – Torque equation - Equations in state – space form.

UNIT-IV:

Circuits model of a 3ph Synchronous motor – Two axis representation of Synchronous Motor. Voltage and current Equations in state – space variable form – Torque equation - dq model based short circuit fault analysis- emphasis on voltage, frequency and recovery time.

UNIT-V:

Modeling of Permanent Magnet Synchronous motor – Modeling of Brushless DC Motor.

TEXT BOOKS:

- 1. Generalized Machine theory P.S. Bimbhra, Khanna Publishers
- 2. Analysis of electric machinery and Drives systems Paul C. Krause, Oleg wasynezuk, Scott D. Sudhoff.

- 1. Thyristor control of Electric Drives Vedam Subranmanyam.
- 2. Power System Stability and Control Prabha Kundur, EPRI.
- 3. Performance optimization of induction motors during Voltage-controlled soft starting, Article in IEEE Transactions On Energy Conversion, July 2004.

- 4. A Novel Method for Starting of Induction Motor with Improved Transient Torque Pulsations, Nithin K.S, Dr. Bos Mathew Jos, Muhammed Rafeek, Dr. Babu Paul. International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 8, February 2013.
- 5. NPTEL Course on "Modelling and Analysis of Electrical Machines", https://www.youtube.com/playlist?list=PLbMVogVj5nJQBG9363J1uq5Fnq4m1yGXL

POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS (Professional Elective - I)

Prerequisite: Power Electronics , Renewable Energy Systems

Course Objectives: to prepare students to

- Provide knowledge about the stand alone and grid connected renewable energy systems.
- equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- analyse and comprehend the various operating modes of wind electrical generators and solar energy systems.
- design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems. To develop maximum power point tracking algorithms.

Course Outcomes: At the end of the course, the student is able to:

- Ability to understand and analyze power system operation, stability, control and protection.
- Ability to handle the engineering aspects of electrical energy generation and utilization.

UNIT-I:

INTRODUCTION

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNI-II:

ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION

Reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

UNIT-III:

POWER CONVERTERS Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

UNIT-IV:

ANALYSIS OF WIND AND PV SYSTEMS Stand alone operation of fixed and variable speed wind energy conversion systems and solar systemGrid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integrated solar system

UNIT-V:

HYBRID RENEWABLE ENERGY SYSTEMS

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

TEXT BOOKS:

- 1. S. N. Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford University Press, 2005.
- 2. B.H.Khan Non-conventional Energy sources Tata McGraw-hill Publishing Company, New Delhi,2009.

- 1. Rashid .M. H "power electronics Hand book", Academic press, 2001.
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 3. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 5. Andrzej M. Trzynnadlowski, 'Introduction to Modern Power Electronics', Second edition, wiley India Pvt. Ltd, 2012.

SMART GRID TECHNOLOGIES (Professional Elective - I)

Prerequisite: Power Systems, Electrical Measurements, Power Quality

Course Objectives:

- Understand concept of smart grid and its advantages over conventional grid
- Know smart metering techniques
- Learn wide area measurement techniques
- Understanding the problems associated with integration of distributed generation & its solution through smart grid.

Course Outcomes: At the end of the course, the student is able to:

- Appreciate the difference between smart grid & conventional grid
- Apply smart metering concepts to industrial and commercial installations
- Formulate solutions in the areas of smart substations, distributed generation and wide area measurements
- Come up with smart grid solutions using modern communication technologies

UNIT-I:

Introduction to Smart Grid, Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Concept of Robust & Self Healing Grid Present development & International policies in Smart Grid. Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation.

UNIT-II:

Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit(PMU)

UNIT-III:

Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of micro-grid, Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines, Captive power plants, Integration of renewable energy sources

UNIT-IV:

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit

UNIT-V:

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area, Network (NAN), Wide Area Network (WAN), Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid, Broadband over Power line (BPL), IP based protocols

TEXT BOOKS:

- 1. Ali Keyhani, "Design of smart power grid renewable energy systems", Wiley IEEE, 2011
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press, 2009

- 1. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, "Smart Grid: Technology and Applications", Wiley 2012
- 2. Stuart Borlase, "Smart Grid: Infrastructure, Technology and solutions " CRC Press
- 3. A.G.Phadke, "Synchronized Phasor Measurement and their Applications", Springer

DYNAMICS OF ELECTRICAL MACHINES (Professional Elective - I)

Prerequisite: Machine Modeling and Analysis

Course Objectives: to prepare the students to

- Understand generalized modeling of electrical machines
- analyze different electrical machines with dynamic modeling

Course Outcomes: After taking this course, the student will be able to:

- Understand the basic mathematical analysis of electrical machines and its characteristics.
- Understand behavior of electrical machines under steady state and transient state.
- Understand dynamic modeling of electrical machines.

UNIT-I:

BASIC MACHINE THEORY

Electromechanical Analogy – Magnetic Saturation – Rotating field theory – Operation of Inductor motor – equivalent circuit – Steady state equations of DC machines – operations of synchronous motor – Power angle characteristics

UNIT-II:

ELECTRODYNAMICAL EQUATION & THEIR SOLUTIONS

Spring and Plunger system - Rotational motion – mutually coupled coils – Lagrange's equation – Application of Lagrange's equation solution of Electro dynamical equations.

UNIT-III:

DYNAMICS OF DC MACHINES

Separately excited d.c. generations – stead state analysis – transient analysis – Separately excited d. c. motors – stead state analysis – transient analysis – interconnection of machines – Ward Leonard system of speed control.

UNIT-IV:

INDUCTION MACHINE DYNAMICS

Induction machine dynamics during starting and braking – accelerating time – induction machine dynamic during normal operation – Equation for dynamical response of the induction motor.

UNIT-V:

SYNCHRONOUS MACHINE DYNAMICS

Electromechanical equation – motor operation – generator operation – small oscillations – general equations for small oscillations – representation of the oscillation equations in state variable form.

TEXT BOOKS:

- 1. Sen Gupta D.P. and J.W " Electrical Machine Dynamics "Macmillan Press Ltd 1980.
- 2. Bimbhra P.S. "Generalized Theory of Electrical Machines " Khanna Publishers 2002.

- 1. Thyristor control of Electric Drives Vedam Subranmanyam.
- 2. Performance optimization of induction motors during Voltage-controlled soft starting, Article in IEEE Transactions On Energy Conversion, July 2004.

3. NPTEL Course on "Modelling and Analysis of Electrical Machines", <u>https://www.youtube.com/playlist?list=PLbMVogVj5nJQBG9363J1uq5Fnq4m1yGXL</u>

MODERN CONTROL THEORY (Professional Elective - I)

Prerequisite: Control Systems

Course Objectives:

- To explain the concepts of basics and modern control system for the real time analysis and design of control systems.
- To explain the concepts of state variables analysis.
- To study and analyze non linear systems.
- To analyze the concept of stability for nonlinear systems and their categorization.
- To apply the comprehensive knowledge of optimal theory for Control Systems.

Course Outcomes: Upon completion of this course, students should be able to

- Various terms of basic and modern control system for the real time analysis and design of control systems.
- To perform state variables analysis for any real time system.
- Apply the concept of optimal control to any system.
- Able to examine a system for its stability, controllability and observability.
- Implement basic principles and techniques in designing linear control systems.
- Formulate and solve deterministic optimal control problems in terms of performance indices.
- Apply knowledge of control theory for practical implementations in engineering and network analysis.

UNIT-I:

MATHEMATICAL PRELIMINARIES AND STATE VARIABLE ANALYSIS

Fields, Vectors and Vector Spaces – Linear combinations and Bases – Linear Transformations and Matrices – Scalar Product and Norms – Eigen values, Eigen Vectors and a Canonical form representation of Linear systems – The concept of state – State space model of Dynamic systems – Time invariance and Linearity – Non uniqueness of state model – State diagrams for Continuous-Time State models - Existence and Uniqueness of Solutions to Continuous-Time State Equations – Solutions of Linear Time Invariant Continuous-Time State Equations – State transition matrix and it's properties. Complete solution of state space model due to zero input and due to zero state.

UNIT-II:

CONTROLLABILITY AND OBSERVABILITY

General concept of controllability – Controllability tests, different state transformations such as diagonalization, Jordon canonical forms and Controllability canonical forms for Continuous-Time Invariant Systems – General concept of Observability – Observability tests for Continuous-Time Invariant Systems – Observability of different State transformation forms.

UNIT-III:

STATE FEEDBACK CONTROLLERS AND OBSERVERS

State feedback controller design through Pole Assignment, using Ackkermans formula– State observers: Full order and Reduced order observers.

UNIT-IV:

NON-LINEAR SYSTEMS

Introduction – Non Linear Systems - Types of Non-Linearities – Saturation – Dead-Zone - Backlash – Jump Phenomenon etc; Linearization of nonlinear systems, Singular Points and its types– Describing

function–describing function of different types of nonlinear elements, – Stability analysis of Non-Linear systems through describing functions. Introduction to phase-plane analysis, Method of Isoclines for Constructing Trajectories, Stability analysis of nonlinear systems based on phase-plane method.

UNIT-V:

STABILITY ANALYSIS

Stability in the sense of Lyapunov, Lyapunov's stability and Lypanov's instability theorems - Stability Analysis of the Linear continuous time invariant systems by Lyapunov second method – Generation of Lyapunov functions – Variable gradient method – Krasooviski's method.

TEXT BOOKS:

- 1. M.Gopal, Modern Control System Theory, New Age International 1984
- 2. Ogata. K, Modern Control Engineering, Prentice Hall 1997

- 1. N K Sinha, Control Systems, New Age International 3rd edition.
- 2. Donald E.Kirk, Optimal Control Theory an Introduction, Prentice Hall Network series First edition.

POWER SEMICONDUCTOR DEVICES AND MODELLING (Professional Elective - II)

Prerequisite: Power Electronics

Cousre Objectives: to prepare the students to

- improve power semiconductor device structures for adjustable speed motor control applications.
- understand the static and dynamic characteristics of current controlled power semiconductor devices
- understand the static and dynamic characteristics of voltage controlled power semiconductor devices
- enable the students for the selection of devices for different power electronics applications
- understand the control and firing circuit for different devices.

Course Outcomes: Upon completion of this course, students should be able to

- Know the operating charectertics of various basic semiconductor devices and switches
- Understand the advanced power semiconductor devices operation.
- Know the modeling of basic and advanced semiconductor devices and switches through simulation
- Analyze the applications of various power semiconductor switches

UNIT-I:

POWER DIODES: Basic structure and V-I characteristics, breakdown voltages and control, on-state losses, switching characteristics-turn-on transient, turn off transient and reverse recovery transient, Schottky diodes, snubber requirements for diodes, diode snubber, modelling and simulation of Power diodes. 5 Hrs. Power BJT'S: Basic structure and V-I characteristics, breakdown voltages and control, secondary breakdown and it's control- FBSOA and RBSOA curves - on state losses, switching characteristics, resistive switching specifications, clamped inductive switching specifications, turnon transient, turn-off transient, storage time, base drive requirements, switching losses.

UNIT-II:

POWER BJT'S: Device protection- snubber requirements for BJT'S and snubber design switching aids,modeling and simulation of power BJT'S.

SILICON CONTROLLED RECTIFIERS (THYRISTORS): Basic structure, V-I characteristics, turn-on process, on-state operation, turn -off process, switching characteristics, turn-on transient and di/dt limitations, turn-off transient, turnoff time and reapplied dv/dt limitations, gate drive requirements, ratings of thyristors, snubber requirements and snubber design, modelling and simulation of Thyristor.

TRIACS: Basic structure and operation-I characteristics, ratings, snubber requirements, modelling and simulation of triacs.

UNIT-III:

GATE TURNOFF THYRISTOR (GTO): Basic structure and operation, GTO switching characteristics, GTO turn-on transient, GTO turn -off transient, minimum on and off state times, gate drive requirements, maximum controllable anode current, over current protection of GTO'S, modelling and simulation of GTO'S.

POWER MOSFET'S: Basic structure, V-I characteristics, turn-on process, on state operation, turnoff process, switching characteristics, resistive switching specifications, clamped inductive switching specifications - turn-on transient and di/dt limitations, turn-off transient, turn off time, switching losses, effect of reverse recovery transients on switching stresses and losses - dv/dt limitations, gating

requirements, gate charge - ratings of MOSFET'S, FBSOA and RBSOA curves, device protection - snubber requirements, modeling and simulation of Power MOSFET'S.

UNIT-IV:

INSULATED GATE BIPOLAR TRANSISTORS (IGBT'S): Basic structure and operation, latch up IGBT, switching characteristics, resistive switching specifications, clamped inductive switching specification – IGBT turn-on transient, IGBT turn off transient- current tailing - gating requirements ,ratings of IGBT'S, FBSOA and RBSOA curves, switching losses – minimum on and off state times, switching frequency capability – overcurrent protection of IGBT'S, short circuit protection, snubber requirements and snubber design.

UNIT-V:

ADVANCED POWER SEMICONDUCTOR DEVICES: MOS gated thyristors, MOS controlled thyristors or MOS GTO'S, base resistance controlled thyristors, emitter switched thyristor, thermal design of power electronic equipment, modelling and simulation, heat transfer by conduction, transient thermal impedance, heat sinks, heat transfer by radiation and convection - heat sinkselection for power semiconductor devices.

TEXT BOOKS:

- 1. Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics Converters, Applications, and Design", 3rd Edition. Wiley India Pvt Ltd, 2011.
- 2. G. Massobrio, P. Antognetti, "Semiconductor Device Modeling with Spice", McGrawHill, 2nd Edition, 2010.

- 1. B. Jayant Baliga, "Power Semiconductor Devices", 1st Edition, International Thompson Computer Press, 1995.
- 2. V. Benda, J. Gowar, and D. A. Grant, "Discrete and Integrated Power Semiconductor Devices: Theory and Applications", John Wiley & Sons, 1999.

REACTIVE POWER COMPENSATION AND MANAGEMENT (Professional Elective - II)

Prerequisite: Power Systems

Course Objectives:

- To identify the necessity of reactive power compensation
- To describe load compensation
- To select various types of reactive power compensation in transmission systems
- To illustrate reactive power coordination system
- To characterize distribution side and utility side reactive power management.

Course Outcomes: Upon the completion of this course, the student will be able to

- Distinguish the importance of load compensation in symmetrical as well as un symmetrical loads
- Observe various compensation methods in transmission lines
- Construct model for reactive power coordination
- Distinguish demand side reactive power management & user side reactive power management

UNIT-I:

LOAD COMPENSATION

Objectives and specifications – reactive power characteristics – inductive and capacitive approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.

UNIT-II:

STEADY-STATE REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEM

Uncompensated line – types of compensation – Passive shunt and series and dynamic shunt compensation – examples

TRANSIENT STATE REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEMS:

Characteristic time periods – passive shunt compensation – static compensations - series capacitor compensation – compensation using synchronous condensers – examples

UNIT-III:

REACTIVE POWER COORDINATION

Objective – Mathematical modeling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency –Harmonics, radio frequency and electromagnetic interferences

UNIT-IV:

DEMAND SIDE MANAGEMENT

Load patterns – basic methods load shaping – power tariffs- KVAR based tariffs penalties for voltage flickers and Harmonic voltage levels

DISTRIBUTION SIDE REACTIVE POWER MANAGEMENT:

System losses –loss reduction methods – examples – Reactive power planning – objectives – Economics Planning capacitor placement – retrofitting of capacitor banks

UNIT-V:

USER SIDE REACTIVE POWER MANAGEMENT

KVAR requirements for domestic appliances – Purpose of using capacitors – selection of capacitors – deciding factors – types of available capacitor, characteristics and Limitations

REACTIVE POWER MANAGEMENT IN ELECTRIC TRACTION SYSTEMS AND ARE FURNACES:

Typical layout of traction systems – reactive power control requirements – distribution transformers-Electric arc furnaces – basic operations- furnaces transformer –filter requirements – remedial measures –power factor of an arc furnace

TEXT BOOKS:

- 1. Reactive power control in Electric power systems by T.J.E.Miller, John Wiley and sons, 1982.
- 2. Reactive power Management by D.M.Tagare, Tata McGraw Hill, 2004.

REFERENCES:

1. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, April, 2012, Wiely publication.

HIGH FREQUENCY MAGNETIC COMPONENTS (Professional Elective - II)

Prerequisite: None

Course Objectives: to prepare the students to

- Know about magnetic circuits
- Know about high frequency magnetic components

Course Outcomes: the student will be able to

- Design of magnetic components (i.e., inductor and transformer) in a converter.
- Perform steady-state analysis of switched mode power supply.
- Understand core loss in an electromagnetic device, recognize & describe its effect.
- Describe the engineering uses of electromagnetic waves, by frequency band, and the respective hazards associated with them

UNIT-I:

FUNDAMENTALS OF MAGNETIC DEVICES: Introduction, Magnetic Relationships, Magnetic Circuits, Magnetic Laws, Eddy Currents, Core Saturation, Volt-Second Balance, Inductance, Inductance Factor, Magnetic Energy, Self-Resonant Frequency, Classification of Power Losses in Magnetic Components, Non-inductive Coils.

MAGNETIC CORES: Introduction, Properties of Core Materials, Magnetic Dipoles, Magnetic Domains, Curie Temperature, Magnetization, Magnetic Materials, Hysteresis, Core Permeability, Core Geometries, Iron Alloy Cores, Amorphous Alloy Cores, Nickel–Iron and Cobalt–Iron Cores, Ferrite Cores, Powder Cores, Nano-crystalline Cores, Superconductors, Hysteresis Core Loss, Eddy-Current Core Loss, Total Core Loss, Complex Permeability.

UNIT-II:

SKIN EFFECT & PROXIMITY EFFECT: Introduction, Magnet Wire, Wire Insulation, Skin Depth, Ratio of AC-to-DC Winding Resistance, Skin Effect in Long Single Round Conductor, Current Density in Single Round Conductor, Impedance of Round Conductor, Magnetic Field Intensity for Round Wire, Other Methods of Determining the Round Wire Inductance, Power Density in Round Conductor, Skin Effect on Single Rectangular Plate. Proximity and Skin Effects in Two Parallel Plates, Anti-proximity and Skin Effects in Two Parallel Plates, Proximity Effect in Multiple-Layer Inductor, Appendix: Derivation of Proximity Power Loss.

WINDING RESISTANCE AT HIGH FREQUENCIES: Introduction, Winding Resistance, Square and Round Conductors, Winding Resistance of Rectangular Conductor, Winding Resistance of Square Wire, Winding Resistance of Round Wire, Leakage Inductance, Solution for Round Conductor Winding in Cylindrical Coordinates, Litz Wire, Winding Power Loss for Inductor Current with Harmonics, Effective Winding Resistance for Non-sinusoidal Inductor Current, Thermal Model of Inductors.

UNIT-III:

TRANSFORMERS: Introduction, Neumann's Formula for Mutual Inductance, Mutual Inductance, Energy Stored in Coupled Inductors, Magnetizing Inductance, Leakage Inductance, Measurement of Transformer Inductances, Stray Capacitance, High-Frequency Transformer Model, Non-interleaved Windings, Interleaved Windings, AC Current Transformers, Winding Power Losses with Harmonics, Thermal Model of Transformers.

DESIGN OF TRANSFORMERS: Introduction, Area Product Method, Optimum Flux Density, Transformer Design for Fly-back Converter in CCM, Transformer Design for Fly-back Converter in

DCM, Transformer Design for Fly-back Converter in CCM, Transformer Design for Fly-back Converter in DCM.

UNIT-IV:

INTEGRATED INDUCTORS: Introduction, Resistance of Rectangular Trace, Inductance of Straight Rectangular Trace, Construction of Integrated Inductors, Meander Inductors, Inductance of Straight Round Conductor, Inductance of Circular Round Wire Loop, Inductance of Two-Parallel Wire Loop, Inductance of Rectangle of Round Wire, Inductance of Polygon Round Wire Loop, Bond-wire Inductors, Single-Turn Planar Inductor, Inductance of Planar Square Loop, Planar Spiral Inductors, Multi-metal Spiral Inductors, Planar Transformers, MEMS Inductors, Inductance of Coaxial Cable, Inductance of Two-Wire Transmission Line, Eddy Currents in Integrated Inductors, Model of RF Integrated Inductors, PCB Inductors.

DESIGN OF INDUCTORS: Introduction, Restrictions on Inductors, Window Utilization Factor, Temperature Rise of Inductors, Mean Turn Length of Inductors, Area Product Method, AC Inductor Design, Inductor Design for Buck Converter in CCM, Inductor Design for Buck Converter in DCM method.

UNIT-V:

SELF-CAPACITANCE: Introduction, High-Frequency Inductor Model, Self-Capacitance Components, Capacitance of Parallel-Plate Capacitor, Self-Capacitance of Foil Winding Inductors, Capacitance of Two Parallel Round Conductors, Capacitance of Round Conductor and Conducting Plane, Self-Capacitance of Single-Layer Inductors, Self-Capacitance of Multi-layer Inductors, Capacitance of Coaxial Cable.

TEXT BOOKS:

- 1. Design of Magnetic Components for Switched Mode Power Converters, Umanand L., Bhat,S.R., ISBN:978-81-224-0339-8, Wiley Eastern Publication, 1992.
- 2. High-Frequency Magnetic Components, Marian K. Kazimierczuk, ISBN: 978-0-470- 71453-9 John Wiley & Sons, Inc.

- 1. G.C. Chryssis, High frequency switching power supplies, McGraw Hill, 1989 (2nd Edn.)
- 2. Eric Lowdon, Practical Transformer Design Handbook, Howard W. Sams & Co., Inc., 1980
- 3. "Thompson --- Electrodynamic Magnetic Suspension.pdf"
- 4. Witulski --- "Introduction to modeling of transformers and coupled inductors" Beattie --- "Inductance 101.pdf"
- 5. P. L. Dowell, "Effects of eddy currents in transformer windings.pdf"
- 6. Dixon--- "Eddy current losses in transformer windings.pdf"
- J J Ding, J S Buckkeridge, "Design Considerations For A Sustainable Hybrid Energy System" IPENZ Transactions, 2000, Vol. 27, No. 1/EMCh.
- 8. Texas Instruments --- "Windings.pdf"
- 9. Texas Instruments --- "Magnetic core characteristics.pdf" Ferroxcube --- "3f3 ferrite datasheet.pdf" Ferroxcube --- "Ferrite selection guide.pdf" Magnetics, Inc., Ferrite Cores (www.mag-inc.com).

HYBRID ELECTRIC VEHICLES (Professional Elective - II)

Prerequisite: Power Electronics, Power Semiconductor Drives, Advanced control of Electric Drives

Course Objectives:

- To understand upcoming technology of hybrid system
- To understand different aspects of drives application
- Learning the electric Traction

Course Outcomes: Upon the completion of this course, the student will be able to

- Acquire knowledge about fundamental concepts, principles, analysis and design of hybrid and electric vehicles.
- To learn electric drive in vehicles / traction.

UNIT-I:

History of hybrid and electric vehicles, Social and environmental importance of hybrid and electric vehicles, Impact of modern drive-trains on energy supplies, Basics of vehicle performance, vehicle power source characterizationTransmission characteristics, Mathematical models to describe vehicle performance

UNIT-II:

Basic concept of hybrid traction, Introduction to various hybrid drive-train topologies, Power flow control in hybrid drive-train topologies, Fuel efficiency analysis.

UNIT-III:

Introduction to electric components used in hybrid and electric Vehicles, Configuration and control of DC Motor drives, Configuration and control of Introduction Motor drives configuration and control of Permanent Magnet Motor drives Configuration and control of Switch Reluctance, Motor drives, drive system efficiency

UNIT-IV:

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology, Communications, supporting subsystems

UNIT-V:

Introduction to energy management and their strategies used in hybrid and electric vehicle, Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies

TEXT BOOKS

- 1. Sira -Ramirez, R. Silva Ortigoza, "Control Design Techniques in Power Electronics Devices" Springer.
- 2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, "Sliding mode control of switching Power Converters"

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design fundamentals, CRC Press, 2003.
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and

Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

- 3. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
- 4. Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

RESEARCH METHODOLOGY AND IPR

Prerequisite: --

Course Objectives:

- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Effective literature studies approaches, analysis Plagiarism, Research ethics

UNIT-II:

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-III:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-IV:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patentinformation and databases. Geographical Indications.

UNIT-V:

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall , "Industrial Design", McGraw Hill, 1992.
- 4. Niebel , "Product Design", McGraw Hill, 1974.
- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New
- 7. Technological Age", 2016.
- 8. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

MACHINE MODELLING AND ANALYSIS LAB (Lab - I)

Prerequisite: Electrical Machines, Machine Modelling Analysis

Course Objectives:

- Identifying the methods and assumptions in modeling of machines.
- Recognize the different frames for modeling of AC machines.
- To write voltage and torque equations in state space form for different machines.

Cousre Outcomes: At the end of the course, the student is able to:

- Develop the mathematical models of various machines like, induction motor and Synchronous machines ,permenant magnet synchronous motor,brushless DC motor using modeling equations.
- Analyze the developed models in various reference frames.

List of Experiments

- 1. Develop a dynamic model of open loop controlled dc motor
- 2. Develop a dynamic model of closed loop controlled dc motor
- 3. Convert ABC voltages into stationary frame
- 4. Convert ABC voltages into synchronous frames
- 5. Convert ABC voltages into rotor reference frames
- 6. Develop dynamic model of 3-phase Induction motor and generator
- 7. Develop a mathematical model for V/f controlled 3-phase Induction motor
- 8. Develop a mathematical model for 3-phase Synchronous motor
- 9. Develop a mathematical model for 3-phase Permanent Magnet Synchronous motor
- 10. Develop a mathematical model for Brushless DC Motor
- 11. Develop a dynamic model for closed loop control of Induction Motor
- 12. Develop a dynamic model for closed loop control of Synchronous motor
- Note: Conduct any 10 experiments from the above using anysimulation tool

POWER ELECTRONIC CONVERTERS LAB (Lab - II)

Prerequisite: Power Electronic Converters

Course Objectives: Upon successful completion of the lab students will be familiar with:

• Simulation of various AC-AC, AC-DC, DC-DC, DC-AC converter topologies

Course Outcomes: At the end of the course, the student should be able to:

- Simulate AC-AC Converters
- Simulate AC-DC Converters
- Simulate DC-DC Converters
- Simulate DC-AC Converters
- Analysis of various converter topologies developed

PART-A

- 1. Single phase full converter using RL and E loads.
- 2. Single phase semi converter using RL and E loads.
- 3. Three phase full converter using RL and E loads.
- 4. Three phase semi converter using RL and E loads.
- 5. Single phase AC Voltage controller using RL load.
- 6. Single phase Cyclo-converter using RL load.
- 7. Three phase six stepped inverter
- 8. Three-phase inverter with PWM controller.
- 9. BUCK ,BOOST and CUCK regulators
- 10. Space vector PWM converter

Note: Conduct any 5 hardware experiments from PART-A

PART-B:

- 1. Single phase full converter using RL and E loads.
- 2. Single phase semi converter using RL and E loads.
- 3. Three phase full converter using RL and E loads.
- 4. Three phase semi converter using RL and E loads.
- 5. Single phase AC Voltage controller using RL load.
- 6. Single phase Cyclo-converter using RL load.
- 7. Three phase six stepped inverter
- 8. Three-phase inverter with PWM controller.
- 9. BUCK ,BOOST and CUCK regulators
- 10. Space vector PWM converter

Note: Conduct any 5 experiments from **PART-B** using any simulation tool

ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:

- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very firsttime submission

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

UNIT-III:

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

DISASTER MANAGEMENT (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:

Introduction:

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:

Repercussions of Disasters and Hazards:

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

UNIT-III:

Disaster Preparedness and Management:

Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:

Risk Assessment Disaster Risk:

Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

UNIT-V:

Disaster Mitigation:

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et. Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., Disaster Administration and Management Text and Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to

- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:

Alphabets in Sanskrit,

UNIT-II:

Past/Present/Future Tense, Simple Sentences

UNIT-III:

Order, Introduction of roots,

UNIT-IV:

Technical information about Sanskrit Literature

UNIT-V:

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- Understand value of education and self- development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to

- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

UNIT-II:

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

UNIT-III:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

UNIT-V:

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation, Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TEXT BOOKS/ REFERENCES:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working), **Philosophy of the Indian Constitution:** Preamble, Salient Features.

UNIT-II:

Contours of Constitutional Rights & Duties: Fundamental Rights Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT-III:

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT-V:

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:

- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT-II:

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:

Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the scho curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT-IV:

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

- Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:

- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:

Definitions of Eight parts of yog. (Ashtanga)

UNIT-II: Yam and Niyam.

UNIT-III:

Do`s and Don't's in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:

Asan and Pranayam

UNIT-V:

i) Various yog poses and their benefits for mind & body

ii) Regularization of breathing techniques and its effects-Types of pranayam

- 1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to

- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:

Neetisatakam-Holistic development of personality

- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

UNIT-III:

Approach to day to day work and duties.

- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:

Statements of basic knowledge.

- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 Verses 13, 14, 15, 16, 17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:

- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.