Mahatma Gandhi Institute of Technology (Autonomous)

B.Tech. in Electrical and Electronics Engineering Scheme of Instruction and Examination

(Choice Based Credit System)

Applicable from the Academic Year 2022-23

I SEMESTER

			Instruction			Examination			\$
S.No.	Course Code	Course Title	Hours per week			Max. Marks		Duration	edit
			L	Т	P/D	CIE	SEE	of SEE in Hours	Cr
1	MA101BS	Matrices and Calculus	3	1	0	40	60	3	4
2	PH101BS	Applied Physics	3	1	0	40	60	3	4
3	CS102ES	C Programming and Data Structures	3	0	0	40	60	3	3
4	EE101PC	Electrical Circuit Analysis - I	3	0	0	40	60	3	3
5	PH151BS	Applied Physics Laboratory	0	0	3	40	60	3	1.5
6	CS152ES	C Programming and Data Structures Laboratory	0	0	2	40	60	3	1
7	EE151PC	Elements of Electrical and Electronics Engineering	0	0	2	50	-	-	1
8	ME151ES	Engineering Workshop	0	1	3	40	60	3	2.5
9	-	Induction Programme	-	-	-	-	-	-	-
		Total	12	3	10	330	420	-	20

II SEMESTER

	Course Code	Course Title	Instruction			s			
S.No.			Hours per week			Max. Marks		Duration	edit
			L	Т	P/D	CIE	SEE	of SEE	ő
1	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	40	60	3	4
2	CH201BS	Engineering Chemistry	3	1	0	40	60	3	4
3	ME201ES	Engineering Graphics	1	0	4	40	60	3	3
4	EE201PC	Electrical Circuit Analysis -II	2	0	0	40	60	3	2
5	EN201HS	English for Skill Enhancement	2	0	0	40	60	3	2
6	CH251BS	Engineering Chemistry Laboratory	0	0	2	40	60	3	1
7	CS251ES	Python Programming Laboratory	0	1	2	40	60	3	2
8	EE251PC	Electrical Circuit Analysis Laboratory	0	0	2	40	60	3	1
9	EN251HS	English Language and Communication Skills Laboratory	0	0	2	40	60	3	1
10	MC201BS	Environmental Science	3	0	0	40	60	3	0
		Total	14	3	12	400	600	-	20

L: Lecture T: Tutorial D: Drawing P: Practical CIE - Continuous Internal Evaluation SEE - Semester End Examination

B.Tech. I Semester

L	Т	Ρ	С		
3	1	0	4		

MA101BS: Matrices and Calculus (Common to all Branches)

Course Objectives

- Types of matrices and their properties, concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigen values and eigen vectors and to reduce the quadratic form to canonical form.
- Geometrical approach to the mean value theorems and their application to the mathematical problems, evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative, finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications.

Course Outcomes

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations.
- Find the Eigen values and Eigen vectors, reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems, evaluate the improper integrals using Beta and Gamma functions.
- Find the extreme values of functions of two variables with and without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes.

UNIT-I: Matrices

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss- Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations, LU Decomposition method, Gauss elimination method and Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors

Linear Transformation and Orthogonal Transformation: Eigen values, Eigen vectors, properties of Symmetric, Skew Symmetric, Orthogonal, Unitary, Hermitian and Skew Hermitian matrices with reference to Eigen values and Eigen vectors Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series. Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-IV: Multivariable Calculus (Partial Differentiation and applications)

Definitions of Limit and continuity, Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence and independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.