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What is AI ?

Systems that think like humans Systems that think rationality

``The exciting new effort to make 

computers think ... machines with minds, 

in the full and literal sense'' (Haugeland, 

1985) 

``The automation of activities that we 

associate with human thinking, activities 

such as decision-making, problem 

solving, learning ...'' (Bellman, 1978)

``The study of mental faculties through the 

use of computational models'' (Charniak 

and McDermott, 1985) 

``The study of the computations that make 

it possible to perceive, reason, and act'' 

(Winston, 1992) 

Systems that act like humans Systems that act like rationality

``The art of creating machines that 

perform functions that require intelligence 

when performed by people'' (Kurzweil, 

1990) 

``The study of how to make computers do 

things at which, at the moment, people 

are better'' (Rich and Knight, 1991) 

``A field of study that seeks to explain and 

emulate intelligent behavior in terms of 

computational processes'' (Schalkoff, 

1990) 

``The branch of computer science that is 

concerned with the automation of 

intelligent behavior'' (Luger and 

Stubblefield, 1993) 
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Acting humanly: The Turing Test approach

• The Turing Test, proposed by Alan Turing (Turing, 1950), was 
designed to provide a satisfactory operational definition of 
intelligence.

• The computer would need to possess the following 
capabilities: 
1. Natural language processing to enable it to communicate successfully in 

English (or some other human language);

2. Knowledge representation to store information provided before or during the 
interrogation; 

3. Automated reasoning to use the stored information to answer questions and 
to draw new conclusions; 

4. Machine learning to adapt to new circumstances and to detect and 
extrapolate patterns.

• To pass the total Turing Test, the computer will need
• Computer Vision

• Robotics
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Thinking humanly: The cognitive modeling approach 

- Program thinks like a human ..!

We need to get inside the actual workings of human minds. 
There are three ways: 
– through introspection--trying to catch our own thoughts as they 

go by

– or through psychological experiments.

– Brain Imaging

Cognitive science brings together 

• Computer Models of AI and

• Experimental Techniques from Psychology
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Thinking rationality: The Logical approach

• Ensure that all actions performed by computer are 
justifiable (“rational”)

• Rational = Conclusions are provable from inputs and 
prior knowledge

• Problems:
– Representation of informal knowledge is difficulty

– Hard to define “provable” plausible reasoning

– Combinatorial explosion: Not enough time or space to prove 
desired conclusions.

Facts and Rules 

in Formal Logic
Theorem Prover
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Acting rationally: The rational agent approach

• Rational behavior : doing the right thing ( that which is 

expected to maximize goal achievement, given the available 

information).

• Rational Agent is one that acts to achieve the best outcomes 

or, when there is uncertainty, the best expected outcome.

Rational agents do the best they can 

given their resources
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Rational Agents

• Adjust amount of reasoning according to 

available resources and importance of 

the result

• This is one thing that makes AI hard

very few resources lots of resources

no thought

“reflexes”

Careful, deliberate 

reasoning

limited, 

approximate 

reasoning



SLIDE 21

AI (Advantages and 
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Areas of Study in AI

• Reasoning, optimization, resource allocation
– planning, scheduling, real-time problem solving, 

intelligent assistants, internet agents

• Natural Language Processing
– information retrieval, summarization, understanding, 

generation, translation

• Vision
– image analysis, recognition, scene understanding

• Robotics
– grasping/manipulation, locomotion, motion planning, 

mapping
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Where are we now? 

• SKICAT: a system for automatically classifying the 
terabytes of data from space telescopes and identifying 
interesting objects in the sky. 94% classification 
accuracy, exceeds human abilities.

• Deep Blue: the first computer program to defeat 
champion Garry Kasparov.

• Pegasus: a speech understanding program that is a 
travel agent (1-877-LCS-TALK).

• Jupiter: a weather information system (1-888-573-
TALK)

• HipNav: a robot hip-replacement surgeon.
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Where are we now?

• Navlab: a Ford escort that steered itself from 
Washington DC to San Diego 98% of the way on its own!

• google news: autonomous AI system that assembles 
“live” newspaper

• DS1: a NASA spacecraft that did an autonomous flyby 
an asteroid.

• Credit card fraud detection and loan approval

• Search engines: www.citeseer.com, automatic 
classification and indexing of research papers.

• Proverb: solves NYT puzzles as well as the best 
humans.

http://www.citeseer.com/
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Surprises in AI research

• Tasks difficult for humans have turned out to be 
“easy”
– Chess

– Checkers, Othello, Backgammon

– Logistics planning

– Airline scheduling

– Fraud detection

– Sorting mail

– Proving theorems

– Crossword puzzles
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Surprises in AI research

• Tasks easy for humans have turned out to be 

hard.

– Speech recognition

– Face recognition

– Composing music/art

– Autonomous navigation

– Motor activities (walking)

– Language understanding

– Common sense reasoning (example: how many legs 

does a fish have?)
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Applications of Artificial 

Intelligence

• Robotic vehicles

• Speech recognition

• Logistics planning

• Robotics

• Spam filtering

• Game playing

• Machine Translation

• Medicine

• Tele Communications

• Banking

CS 362  



Agent 

• An agent is anything that can be viewed as 
perceiving its environment through sensors 
and acting upon that environment through 
effectors. 

• Examples: 

  Human agent 

  Robotic agent 

  Software agent 
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Agent and Environment 
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Key Definitions 

• Agent Percept Sequence 

• Agent Function 

• Agent Program 
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Example: Vaccum Cleaner Agent 

 

 

 

 

• Percepts: location and contents, e.g., [A,Dirty] 

• Actions: Left, Right, Suck, NoOp 

• If Current Square is Dirty, then Suck 
Otherwise, move to Other Square 
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Percept Sequence & Action 
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Sensors & Effectors 

 Perceives---sensors. 

 Percept Sequence. 

 The current percept, or a sequence of   

percepts can influence the actions of an  

agent. 

2/20/2021 7 MGIT-HARINATH 



Sensors & Effectors 

 Change the environment- Effectors 

 Action 

 Action  sequences 

 Agent Program 
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Structure of agents 

 A simple agent program can be defined  

mathematically as an agent function which  

maps every possible precepts sequence to  a 

possible action the agent can perform. 

   F: p*-> A 

 The term percept is use to the agent's  

perceptional inputs at any given instant. 
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Agents 

 Autonomous Agent: Decide autonomously  which 

action to take in the current situation  to maximize 

progress towards its goals. 

 Performance measure: An objective  criterion for 
success of an agent's behavior. 

 E.g., performance measure of a vacuum-  cleaner 
agent could be amount of dirt  cleaned up, 
amount of time taken, amount  of electricity 
consumed, amount of noise  generated, etc. 
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Rational Agent 

 AI is about building rational agents. 

 An agent is something that perceives  and 

acts. 

 A rational agent always does the right  

thing. 
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Rational agents 

• An agent should strive to "do the right thing", based 
on what it can perceive and the actions it can 
perform. The right action is the one that will cause 
the agent to be most successful. 

• Rational Agent: For each possible percept sequence, 
a rational agent should select an action that is 
expected to maximize its performance measure, 
given the evidence provided by the percept 
sequence and whatever built-in knowledge the agent 
has. 



Rationality 

Perfect Rationality: 

Assumes that the rational agent  knows all 

and will take the action that  maximize the 

utility. 

Human beings do not satisfy this  definition of 

rationality. 
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Intelligent Agents 

Intelligent Agent:  

must sense,  

must act, 

must be autonomous(to some extent)  

must be rational. 
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PEAS 

PEAS:  

Performance measure 

Environment 

Actuators 

Sensors 
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PEAS 

Specify Task Environment as fully as Possible 
 

• Consider, e.g., the task of designing an automated 
taxi driver: 

 
– Performance measure: Safe, fast, legal, comfortable trip, 

maximize profits 
– Environment: Roads, other traffic, pedestrians, customers 
– Actuators: Steering wheel, accelerator, brake, signal, horn 
– Sensors: Cameras, sonar, speedometer, GPS, odometer, 

engine sensors, keyboard 
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PEAS 

Agent: Medical diagnosis system 

• Performance measure: Healthy patient, 
minimize costs 

• Environment: Patient, hospital, staff 

• Actuators: Screen display (questions, tests, 
diagnoses, treatments, referrals) 

• Sensors: Keyboard (entry of symptoms, 
findings, patient's answers) 
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PEAS 

Agent: Part-picking robot 

• Performance measure: Percentage of parts in 
correct bins 

• Environment: Conveyor belt with parts, bins 

• Actuators: Jointed arm and hand 

• Sensors: Camera, joint angle sensors 
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PEAS 

Agent: Interactive English tutor 

• Performance measure: Maximize student's 
score on test 

• Environment: Set of students 

• Actuators: Screen display (exercises, 
suggestions, corrections) 

• Sensors: Keyboard 
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Agent Environment 

 Environments in which agents operate  can 

be defined in different ways. 

 It is helpful to view the following  definitions 

as referring to the way the  environment 

appears from the point of  view of the agent 

itself. 
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Properties of Task Environment 

• Fully Observable vs Partially Observable 

• Single Agent vs Multi Agent 

• Deterministic vs Stochastic 

• Episodic vs Sequential 

• Static vs Dynamic 

• Discrete vs Continous 

• Known vs Unknown 
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• Fully Observable:  
– Access to Complete State of Environment at each 

point of time. 

– Sensors detect all aspects that are relevant to the 
choice of action 

– Eg: Chess 

• Partially Observable:  
– Noisy and Inaccurate Sensors 

– Eg: Vaccum Agent (Local Dirt Sensor) 
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Environment: Observability 



Environment: Agents 

• Single Agent: 

Eg: Crossword Puzzle 

• Multi Agent: 

Eg: Chess 

Competitive Multi Agent 

Partially Cooperative Multi Agent 
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Environment: Determinism 

• Deterministic: 

 -Next State is Completely determined by  
Current State and Action executed by the 
Agent. 

Eg: Crossword Puzzle, Chess 

• Stochastic: 

 - Partially Observable 

Eg: Taxi Driving 
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Environment: Episodicity 

• Episodic: 
 - Agents Experience divided into Atomic Episodes 
 - Each Episode-Single Action 
 - Next Episode does not depend on actions taken in 

previous episodes. 
Eg: Part Picking Robot, Image Analysis 
• Sequential: 
 - Current Decision could affect all Future Decisions. 
Eg: Chess, Taxi Driving 
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Environment: Dynamism 

• Dynamic: 
– Changes over  time independent of the actions of 

the  agent 

– Eg: Taxi Driving, Interactive English Tutor 

• Static: 
– Does not change  from one state to next  

– Eg: Crossword Puzzle 

• Semi Dynamic: 
– Does not change  but Performance Score does 

– Eg: Chess 
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Environment: Continuity 

• Discrete: 

–Number of   distinct percepts and actions is 
limited. 

– Eg: Crossword Puzzle, Chess 

• Continuous: 

–Number of   distinct percepts and actions is 
not limited. 

– Eg: Taxi Driving 
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Environment: Known 

• Known: 

– Outcomes for all actions are given 

– Partially Observable 

– Eg: Solitaire Card Games 

• UnKnown: 

– Agent have to Learn to make Good Decisions 

– Fully Observable 

– Eg: New Video Game 
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Examples 
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Structure of Agents 

• Agent Program 

• Agent Function 
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Agent= Architecture + Program 



Classes of Intelligent Agents 

 Intelligent agents are grouped in to five  

classes based on their degree of  perceived 

intelligence and capability. 

 Simple reflex agents 

 Model based reflex agents 

 Goal based agents 

 Utility based agents 

 Learning agents 
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Simple reflex agents 

 Simple reflex agents act only on the basis of the  
current percept, ignoring the rest of the percept  
history.  

 The agent function is based on the  condition-action 
rule: if condition then action. 

 Eg: if car-infront-isbraking then initiate-braking 
 Succeeds when the environment is fully  observable. 
 Randomized Simple Reflex Agent 
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Simple reflex agents 
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Simple reflex agents 
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Model Based Agent 
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 A  model-based agent can handle a partially  
observable environment. 

 Maintain Internal State(Keep Track of Part of 
World it cant see now). 

 Update Internal State 
• How World Evolves Independently 
• How Agents Own Actions affect the World 

 This knowledge about "how the world evolves" is  
called a model of the world, hence the name  
"model-based agent". 
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Model Based Agent 
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Model Based Agent 



Goal Based Agent 
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 Goal Information(Describes Situations that are 
desirable). 

 Combine Goal Information with Model. 
 Goal Based Action Selection is Straight Forward 
 Choose  among multiple possibilities, selecting the 

one  which reaches a goal state. 
 Search and Planning(Goal Based) 
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Goal Based Agent 



Utility Based Agent 
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 Goal Based agents only distinguish between goal  
states and non-goal states. 

 Define a measure of how desirable  a particular 
state is.  

 This measure can be obtained  through the use of a 
utility function which maps a  state to a measure of 
the utility of the state. 

 Chooses Action that Maximizes Expected Utility of 
Action Outcomes. 



Utility Based Agent 
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Learning Agent 
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 It allows the agents  to initially operate in unknown 
environments and to  become more competent 

 Four Components: 
 Critic 
 Learning Element 
 Performance Element 
 Problem Generator 

 Eg: Automated Taxi 



Learning Agent 
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Applications of  Intelligent  Agents 

• Intelligent Agents are applied as  
Automated Online Assistants. 

• Use in Smart Phones. 
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How the components of agent programs work 

 • There are three ways in which the agent of program work: 
– Atomic 

– Factored  

– Structured 
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Thank You 

2/20/2021 MGIT-HARINATH 47 



INFORMED  
SEARCH 
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Informed search 

■ We have seen that uninformed search methods that systematically 
explore the state space and find the goals. 

■ Inefficient in most cases. 

■ Informed Search methods use problem specific knowledge, are 
more efficient. 

■ Informed Search method tries to improve problem solving efficiency by 
using problem specific knowledge. 
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■ A search strategy which searches the most promising branches of the  
state-space first can: 

– find a solution more quickly, 

– find solutions even when there is limited time available, 

– often find a better solution, since more profitable parts of the 
state-  space can be examined, while ignoring the unprofitable 
parts. 

■ A search strategy which is better than another at identifying the most  
promising branches of a search-space is said to be more informed. 

Continued 
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■ The general approach we consider is called best-first search. Best-  first 
search is an instance of the general TREE-SEARCH or GRAPH-  SEARCH 
algorithm in which a node is selected for expansion based  on an 
evaluation function, f(n). 

■ The evaluation function is construed as a cost estimate, so the node  
with the lowest evaluation is expanded first. 

■ The implementation of best-first graph search is identical to that for  
uniform-cost search (previous topic), except for the use of f instead of  g 
to order the priority queue. 

Continued 
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Heuristics 

■ Heuristic is a rule of thumb. 

■ “Heuristics are criteria, methods or  

principles for deciding which  

among several alternative courses of  
action promises to be the most effective 

in order to achieve some goals”, 
      Judea Pearl. 

Can use heuristics to identify the most promising search path. 
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■ A heuristic function at a node n is an estimate of the optimum cost 

from  the current node to a goal. Denoted by h(n). 

h(n)=estimated cost of the cheapest path from node n to a goal node. 

■ Example 

– Want to find the path from Vijayawada to Hyderabad 
– Heuristic for Hyderabad may be straight line distance

between Vijayawada and  Hyderabad. 

– h(Vijayawada)=Euclidian distance(Vijayawada, Hyderabad) 

Continued 
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Heuristics 

Example 

■ 8-Puzzle: Number of tiles out of place 

■ h(n)=5 (1,2,3,4,8 are not in correct location) 
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Uninformed Search Vs. Informed Search 
OR  Heuristically Informed Search 
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Uninformed Search Vs. Informed Search 
OR  Heuristically Informed Search 

2/20/2021 10 MGIT-IT-HARINATH 



Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path h(C) 
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Uninformed Search Vs. Informed Search OR  
Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path h(C) h(B) 
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Uninformed Search Vs. Informed Search 
OR  Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path h(C) h(B) < 
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Uninformed Search Vs. Informed Search 
OR  Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path h(C) h(B) C      < 
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Uninformed Search Vs. Informed Search 
OR  Heuristically Informed Search 

Heuristic 

Evaluation  

Function 

Heuristic Value 

Small Heuristic 

Value 

Better Path ) h(B) C      < 

Uninformed Search  

NO INFORMATION 

Direct Search  BEST 

PATH 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to 
reach goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in 
the  heuristic value calculation. 

𝒉𝟏 𝑯𝒆𝒖𝒓𝒊𝒔𝒕𝒊𝒄 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to 
reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in 
the heuristic value calculation. 

𝒉𝟏 𝒉𝟐 𝑯𝒆𝒖𝒓𝒊𝒔𝒕𝒊𝒄 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to
 reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in
 the  heuristic value calculation. 

𝒉𝟏 𝒉𝟐 𝑯𝒆𝒖𝒓𝒊𝒔𝒕𝒊𝒄 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

# 𝒐𝒇 𝑵𝒐𝒅𝒆𝒔 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to
 reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in
 the  heuristic value calculation. 

𝒉𝟏 𝒉𝟐 
𝟓 
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# 𝒐𝒇 𝑵𝒐𝒅𝒆𝒔 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to
 reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in
 the  heuristic value calculation. 

𝒉𝟏 𝒉𝟐 
𝟓 𝟕 

𝑯𝒆𝒖𝒓𝒊𝒔𝒕𝒊𝒄 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

# 𝒐𝒇 𝑵𝒐𝒅𝒆𝒔 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to
 reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in
 the  heuristic value calculation. 

𝒉𝟏 
𝟓 𝟕 
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Heuristic Evaluation Function 

• Good heuristic evaluation function is what directs search to
 reach  goal with the smallest number of nodes. 

• Good heuristic evaluation function is not time consuming in
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Best First Search 

– The generic best-first search algorithm selects a  

node for expansion according to an evaluation  

function. 

– It is a generalization of breadth first search. 

– Priority queue of nodes to be explored. 

– Cost function f(n) to applied to each node. 

– Always choose the node from the frontier that 

has  lowest f(n) value. 
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Greedy Search 

■ Expand node with the smallest estimated cost to reach the goal. 

■ Use heuristic function f(n)=h(n) 

– This algorithm is not optimal 

– Not complete 

2/20/2021 35 MGIT-IT-HARINATH 



Continued…. 

■ Greedy best-first search tries to expand the node that is closest to the 
goal, on the  grounds that this is likely to lead to a solution quickly 

■ Thus, the evaluation function is f(n) = h(n) 

■ E.g. in minimizing road distances a heuristic lower bound for distances 
of cities is their  straight-line distance 

■ Greedy search ignores the cost of the path that has already been 
traversed to reach n 

■ Therefore, the solution given is not necessarily optimal 

■ If repeating states are not detected, greedy best-first search may 
oscillate forever between two promising states. 
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Continued.. 

■ Because greedy best-first search can start down an infinite path 
and never return to try other possibilities, it is incomplete 

■ Because of its greediness the search makes choices that can lead to 
a dead end; then one  backs up in the search tree to the deepest 
unexpanded node 

■ Greedy best-first search resembles depth-first search in the way it 
prefers to follow a  single path all the way to the goal, but will back 
up when it hits a dead end 

■ The worst-case time and space complexity is O(bm) 

■ The quality of the heuristic function determines the practical 

usability of greedy search. 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Path cost(A-E-F-I) = 253 + 178 + 0 = 431 

dist(A-E-F-I)=140+99+211= 450 
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Greedy Search: Complete ? 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 
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𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

2/20/2021 76 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 

2/20/2021 77 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

2/20/2021 78 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 

2/20/2021 79 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 

2/20/2021 80 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

2/20/2021 81 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 

2/20/2021 82 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

2/20/2021 83 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 2/20/2021 84 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 2/20/2021 85 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 2/20/2021 86 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝒇𝟕 

𝒈𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝟓 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝟑 

𝒆𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 

2/20/2021 87 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 

Cost: Node to Node  

Heuristic: Node to 

Goal 

2/20/2021 88 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristic 

Cost: Node to 

Node  Heuristic: 

Node to Goal 

2/20/2021 89 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristic 5 

Cost: Node to 

Node  Heuristic: 

Node to Goal 

2/20/2021 90 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost: Node to 

Node  Heuristic: 

Node to Goal 

2/20/2021 91 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 

Cost: Node to 

Node  Heuristic: 

Node to Goal 

2/20/2021 92 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 3 

Cost: Node to 

Node  Heuristic: 

Node to Goal 

2/20/2021 93 MGIT-IT-HARINATH 



Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 3 9 

Cost: Node to 

Node  Heuristic: 

Node to Goal 
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Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 3 9 

Total 

Cost: Node to 

Node  Heuristic: 

Node to Goal 
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Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 3 9 

Total 8 

Cost: Node to 

Node  Heuristic: 

Node to Goal 
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Greedy Best-First 
Search  Goal – Node 

K 

𝒂𝟏𝟎 --- 

Current Children 

𝒂𝟏𝟎 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

𝒂𝟏𝟎 

𝟓 𝟖 𝟏𝟎 

𝒇𝒇𝟕𝟕 𝒋𝟖,𝒃𝟏𝟎 

𝒇𝟕 𝒈𝟑,𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒈𝒈𝟑𝟑 𝒆𝟓, 𝒋𝟖,𝒃𝟏𝟎 

𝒆𝒆 𝒋 ,𝒃 𝟓 

𝒆𝟓 𝒊𝟔,𝒋𝟖,𝒃𝟏𝟎 

𝒊𝟔 𝒋𝟖,𝒃𝟏𝟎 𝒊𝟔 

𝒊𝟔 𝒌𝟎,𝒋𝟖,𝒃𝟏𝟎 

𝒌𝟎 𝒋𝟖,𝒃𝟏𝟎 𝒌𝟎 

Similar to Uniform 

Cost  Just use 

Heuristic 

& Avoids Cost 
Heuristi
c 

5 2 

Cost 3 9 

Total 8 11 

Cost: Node to Node   

Heuristic: Node to 

Goal 
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Continue… 

■Greedy search is not optimal 

■Greedy search is incomplete without systematic 

checking of repeated states. 

■ In the worst case, the Time and Space 

Complexity of Greedy Search are both O(bm ),  

Where b is the branching factor and m the 

maximum path length. 
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A* Search 

■ Greedy Search minimizes a heuristic h(n) which is an estimated  cost 
from a node n to the goal state. Greedy Search is efficient but  it is not 

optimal nor complete. 

■ Uniform Cost Search minimizes the cost g(n) from the initial state  to n. 
UCS is optimal and complete but not efficient. 

■ New Strategy: Combine Greedy Search and UCS to get an efficient 

algorithm which is complete and optimal. 
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Continue… 

■ A* uses a heuristic function which  f(n) = g(n) + h(n) 

■ g(n) is the exact cost to reach node n from the initial state. 

■ h(n) is an estimation of the remaining cost to reach the goal. 
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n 

g(n) 

h(n) 

f(n) = g(n)+h(n) 
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A* Search 

f(n) = g(n) + h (n) 

State Heuristic: h(n) 

A 366 

B 374 

C 329 

D 244 

E 253 

F 178 

G 193 

H 98 

I 0 

A 

B 
C 

E 

F 

I 

99 

211 

G 

80 

Start 

Goal 

97 

H 

101 

75 118 

111 

D 

140 

g(n): is the exact cost to reach node n from the initial state. 2/20/2021 102 MGIT-IT-HARINATH 



A* Search: Tree Search 

A Start 
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A* Search: Tree Search 

A 

B E 

Start 

75 118 
140 

[393] [449] 
[447] C 
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A* Search: Tree Search 

A 

B E 

F 

80 

Start 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] [413] G 
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A* Search: Tree Search 

A 

B E 

F 

80 

Start 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] 

H 

[413] G 

97 

[415] 
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A* Search: Tree Search 

A 

B E 

F 

H 

80 

Start 

97 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] [413] G 

[415] 

Goal 

101 

I
 

[418] 2/20/2021 107 MGIT-IT-HARINATH 



A* Search: Tree Search 

A 

B E 

F 

H 

80 

Start 

97 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] [413] G 

[415] 

Goal 

101 

I
 

[418] 

I [450] 
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A* Search: Tree Search 

A 

B E 

F 

H 

80 

Start 

97 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] [413] G 

[415] 

Goal 

101 

I [418] 

I [450] 
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A* Search: Tree Search 

A 

B E 

F 

H 

80 

Start 

97 

75 118 
140 

[393] 

99 

[449] 
[447] C 

[417] [413] G 

[415] 

Goal 

101 

I [418] 

I [450] 
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A* Search – Combines Heuristic & 
Cost  Goal - Bucharest 

2/20/2021 111 MGIT-IT-HARINATH 



A* Search – 
Continue  Goal -

Bucharest 
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Arad 
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Ara
d 

Arad 
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Ara
d 

Arad 

Arad  

Children 



Sibiu 

Ara
d 

Arad 

Arad  

Children 

2/20/2021 116 MGIT-IT-HARINATH 



Sibiu 

Timisoara 

Ara
d 

Arad 

Arad  

Children 
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Sibiu 

Timisoara 

Zerind 

Ara
d 

Arad 

Arad  

Children 
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Sibiu 

Timisoara 

Zerind 

Ara
d 

Arad 

Arad  

Children 

Calculate  

Total Cost 2/20/2021 119 MGIT-IT-HARINATH 



Sibiu 

Timisoara 

Zerind 

Ara
d 

Arad 

Arad  

Children 

Calculate  

Total Cost 
Order  

Asc. 2/20/2021 120 MGIT-IT-HARINATH 



Sibiu 

Timisoara 

Zerind 

Ara
d 

Arad 

Arad  

Children 

Calculate  

Total Cost 

Order  

Asc. 
Select 

Min. Cost 2/20/2021 121 MGIT-IT-HARINATH 



Sibiu 

Timisoara 

Zerind 

Sibiu 

Arad  

Children 
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Heuristic 

Sibiu 

Timisoara 

Zerind 

Sibiu 

Arad  

Children 
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Heuristic Cost 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ 

Arad  

Children 

2/20/2021 124 MGIT-IT-HARINATH 



Heuristic Cost Total 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ 

Arad  

Children 

= 
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Heuristic Cost 

253 

Total 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ 

Arad  

Children 

= 
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Heuristic Cost 

253 140 

Total 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ = 

Arad  

Children 

+ 
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Heuristic Cost 

253 140 

Total 

393 + 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ = 

Arad  

Children 

= 
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Heuristic Cost 

253 140 

Total 

393 + = 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ = 

Arad  

Children 
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Heuristic Cost 

253 140 

Total 

393 + = 

Sibiu 

Timisoara 

Zerind 

Sibiu 

+ = 

Arad  

Children 

393 
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Heuristic Cost Total 

Sibiu 

Timisoara 

Zerind 

Timisoara 

+ = 

Arad  

Children 

393 

2/20/2021 131 MGIT-IT-HARINATH 



Heuristic Cost 

329 

Total 

Sibiu 

Timisoara 

Zerind 

Timisoara 

+ = 

Arad  

Children 

393 
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Heuristic Cost 

329 118 

Total 

+ 

Sibiu 

Timisoara 

Zerind 

Timisoara 

+ = 

Arad  

Children 

393 

2/20/2021 133 MGIT-IT-HARINATH 



Heuristic Cost 

329 118 

Total 

447 + = 

Sibiu 

Timisoara 

Zerind 

Timisoara 

+ = 

Arad  

Children 

393 
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Heuristic Cost 

329 118 

Total 

447 + = 

Sibiu 

Timisoara 

Zerind 

Timisoara 

+ = 

Arad  

Children 

393 

447 
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Heuristic Cost Total 

Sibiu 

Timisoara 

Zerind 

Zerind 

+ = 

Arad  

Children 

393 

447 
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Heuristic Cost 

374 

Total 

Sibiu 

Timisoara 

Zerind 

Zerind 

+ = 

Arad  

Children 

393 

447 
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Heuristic Cost 

374 75 

Total 

+ 

Sibiu 

Timisoara 

Zerind 

Zerind 

+ = 

Arad  

Children 

393 

447 
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Heuristic Cost 

374 75 

Total 

449 + = 

Sibiu 

Timisoara 

Zerind 

Zerind 

+ = 

Arad  

Children 

393 

447 
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Heuristic Cost 

374 75 

Total 

449 + = 

Sibiu 

Timisoara 

Zerind 

Zerind 

+ = 

Arad  

Children 

393 

447 

449 
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Current Queue 

Sibiu 

393 
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Current Queue 

Sibiu 

393 

Timisoar

a 447 
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Current Queue 

Sibiu 

393 

Timisoar

a 447 

Zerin

d 449 

2/20/2021 143 MGIT-IT-HARINATH 



Current Queue 

Sibi
u 39
3 

Timisoar

a 447 

Zerin

d 449 

Sibiu 

393 
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Sibiu 
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Sibi
u 

Sibiu 
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Arad 

Sibi
u 

Sibiu 

Sibiu  

Children 
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Arad 

Fagaras 

Sibi
u 

Sibiu 

Sibiu  

Children 
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Arad 

Fagaras 

Orades 

Sibi
u 

Sibiu 

Sibiu  

Children 
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Arad 

Fagaras 

Orades 

Sibi
u 

Sibiu 

Sibiu  

Children 

Ramnicu 
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Arad 

Fagaras 

Orades 

Sibi
u 

Sibiu 

Sibiu  

Children 

Calculate  

Total Cost 

Ramnicu 
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Arad 

Fagaras 

Orades 

Sibi
u 

Sibiu 

Sibiu  

Children 

Calculate  

Total Cost 

Order  

Asc. 

Ramnicu 
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Arad 

Fagaras 

Orades 

Sibi
u 

Sibiu 

Sibiu  

Children 

Calculate  

Total Cost 

Order  

Asc. 
Select 

Min. Cost 

Ramnicu 
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Arad 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 
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Heuristic 

Arad 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 
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Heuristic Cost 

Arad 

+ 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 
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Heuristic Cost Total 

Arad 

+ 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

= 

2/20/2021 157 MGIT-IT-HARINATH 



Heuristic Cost 

366 

Total 

Arad 

+ 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

= 

2/20/2021 158 MGIT-IT-HARINATH 



Heuristic Cost 

366 280 

Total 

+ 

Arad 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

2/20/2021 159 MGIT-IT-HARINATH 



Heuristic Cost 

366 280 

Total 

646 + = 

Arad 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 
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Heuristic Cost 

366 280 

Total 

646 + = 

Arad 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 
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Heuristic Cost Total 

Fagaras 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

2/20/2021 162 MGIT-IT-HARINATH 



Heuristic Cost 

176 

Total 

Fagaras 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 
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Heuristic Cost 

176 239 

Total 

+ 

Fagaras 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 
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Heuristic Cost 

176 239 

Total 

415 + = 

Fagaras 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 
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Heuristic Cost 

176 239 

Total 

415 + = 

Fagaras 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 
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Heuristic Cost Total 

Orades 

+ = 

Sibiu  

Childre

n 
Arad 646 

Fagaras   415  

Orades  

Ramnicu 
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Heuristic Cost 

380 

Total 

Orades 

+ = 

Sibiu  

Childre

n 
Arad 646 

Fagaras    415  

Orades  

Ramnicu 
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Heuristic Cost 

380 291 

Total 

+ 

Orades 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 
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Heuristic Cost 

380 291 

Total 

671 + = 

Orades 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 
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Heuristic Cost 

380 291 

Total 

671 + = 

Orades 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 
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Heuristic Cost Total 

Ramnicu 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 
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Heuristic Cost 

193 

Total + = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 

Ramnicu 
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Heuristic Cost 

193 220 

Total 

+ 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 

Ramnicu 
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Heuristic Cost 

193 220 

Total 

413 + = 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 

Ramnicu 
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Heuristic Cost 

193 220 

Total 

413 + = 

+ = 

Sibiu  

Children 

Arad 

Fagaras 

Orades 

Ramnicu 

646 

415 

671 

413 

Ramnicu 
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Current Queue 

Timisoar

a 447 

Zerin

d 449 
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Current Queue 

Arad 

646 

Timisoar

a 447 

Zerin

d 449 

Orade

s 671 

Ramnic

u 413 

Fagara

s 415 
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Current Queue 

Arad 

646 

Timisoar

a 447 

Zerin

d 449 

Orade

s 671 

Ramnic

u 413 

Fagara

s 415 
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Current Queue 

Arad 

646 

Timisoar

a 447 

Zerin

d 449 

Orade

s 671 

Ramnic
u 41

3 

Fagara

s 415 

Ramnic

u 413 
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Ramnicu 
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Ramnic
u 
Ramnicu 
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Craiova 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 
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Craiova 

Pitesti 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 
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Craiova 

Pitesti 

Sibiu 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 
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Craiova 

Pitesti 

Sibiu 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 

Calculate  

Total Cost 2/20/2021 186 MGIT-IT-HARINATH 



Craiova 

Pitesti 

Sibiu 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 

Calculate  

Total Cost 
Order  
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Craiova 

Pitesti 

Sibiu 

Ramnic
u 
Ramnicu 

Ramnicu  

Children 

Calculate  

Total Cost 
Order  

Asc. 
Select 
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Craiova 

Ramnicu  

Children 

Craiova 

Pitesti 

Sibiu 
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Heuristic 

Craiova 

Ramnicu  

Children 

Craiova 

Pitesti 

Sibiu 
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Heuristic Cost 

Craiova 

+ 

Ramnicu  

Children 

Craiova 

Pitesti 

Sibiu 
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Heuristic Cost Total 

Craiova 

+ 

Ramnicu  

Children 

Craiova 

Pitesti 

Sibiu 

= 
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A* is optimally efficient for any given Consistent 
heuristic. 
A* Search is Complete, Optimal. 
A* usually keeps all generated nodes in Memory. 
A* runs out of space long before it runs out of time. 
A* is not practical for many large-scale Problems. 
 



A*(Admissible Heuristic) 
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h(n) is Admissible Heuristic that never over estimates 
the cost to reach the goal. 
 



Memory Bounded Heuristic Search 
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IDA* 
Simplest way to reduce memory requirements is to adapt 
idea of Iterative Deepening to Heuristic Search content. 
Difference 

-Use Cutoff f-cost(f+g) rather than depth.(IDA*) 
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Memory Bounded Heuristic Search 

Recursive BFS(Best First Search) 
Simple recursive algorithm 
Similar to Recursive Depth-First Search but uses f-limit 
variable to keep track of f-value of best alternative path. 
If Current Node exceeds the limit then back track choose 
alternate path. 
RBFS replaces f-value of each node along the path with 
the backed up value(best f-value of its children) 



Analysis 
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IDA* and RBFS suffer from using too little memory. 
IDA* retains only current f-cost limit 
RBFS retains more information in Memory but it uses 
Linear Space. 



Using available Memory in A* 
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MA*(Memory Bound A*) 
SMA*(Simplified Memory Bound A*) 
SMA* is simple, similar to A*(expands best leaf node until 
Memory is full) 
SMA* always drops the worst leaf node(one with highest 
f-value). 
SMA* backs up value of the forgotten node to its 
parent(like RBFS) 



Heuristic Functions 
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Technique to solve problems quickly 
Eg: 8 Puzzle Problem(320-Search Space possible) 

h1- No of misplaced tiles 
h2-Mahanhatten Distance 

h2- admissible 
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Generating Admissible Heuristic from 
Relaxed Problems 

Problem with fewer restrictions(Relaxed Problem) 
Super Graph(State Space Graph of Relaxed Problem) 
Creates additional edges(Removal of restrictions) 
Relaxed Problems better solution if added edges provide 
shortcuts.  
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Generating Admissible Heuristic from 
Sub Problems 

Pattern Databases. 
Store exact solution costs for every possible subproblem 
instance. 
Compute Admissible Heuristic for Complete State by 
observing corresponding sub problem configuration in 
Database.  
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Learning Heuristic from Experience 

Experience (Solving lot of Problems). 
Construct function h(n)-(from example problems) 
Inductive Learning(Works Best when supplied with 
features of the State that are relevant to predicting states 
value) 
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Thank you 



Uninformed Search 

An uninformed (a.k.a. blind, brute-force) search algorithm 
generates the search  tree without using any domain specific 
knowledge. 
No additional information about states beyond that provided in 
the problem definition. 
All they can do is generate successors and distinguish a goal 
state from a non-goal  state. 
All search strategies are distinguished by the order in which 
nodes are expanded. 
 



BREADTH - 
FIRST  

SEARCH 



Breadth-First Search 

Expand shallowest unexpanded node 
Implementation: 
  A FIFO queue, i.e., new successors go at 
end. 
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G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I 



Breadth-First Search  
Goal - Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I J, K, L 



Breadth-First Search  
Goal - Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I J, K, L I 



J 

Breadth-First 
Search  Goal - 

Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I J, K, L I 



J 

Breadth-First 
Search  Goal - 

Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I J, K, L I 

K, L 



J 

Breadth-First 
Search  Goal - 

Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I I 

J 

J, K, L 

K, L 



J 

Breadth-First 
Search  Goal - 

Node J 

Current Waiting 

E F, G, H 

E F, G, H, I, J 

F G, H, I, J 

F G, H, I, J, K, L 

G 

E 

F 

GOAL 

D E, F, G, H 

H, I, J, K, L G 

H I, J, K, L H 

I I 

J 

J, K, L 

K, L 



BFS Algorithm 



Analyzing BFS 

Good news: 

– Complete 
– Guaranteed to find the shallowest path to the goal This is not necessarily 

the best path!  But we can “fix” the algorithm to get the best path. 

– Different start-goal combinations can be explored at the same time 

Bad news: 
– Exponential time complexity: O(bd ) (why?) This is the same for all 

uninformed search  methods 

– Exponential memory requirements! O(bd) (why?) This is not good... 
 



DEPTH - FIRST  
SEARCH 



DFS 

■ In depth-first search, we start  with 
the root node and  completely 
explore  the  descendants of a node 
before  exploring its siblings (and  
siblings are explored in a left-  to-
right fashion). 

■ Depth-first search always  expands 
the deepest node in  the current 
frontier of the  search tree. 

■ LIFO queue 
 

Depth-first traversal: 1 → 2 → 4 → 5 → 3 → 6 → 7 



Depth-First 
Search  Goal - 

Node J 

Current 



Depth-First 
Search  Goal - 

Node J 

Current 

A 



Depth-First 
Search  Goal - 

Node J 

Current 

A A 
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A 

B 
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Depth-First 
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A 

B 
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B 
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A 

B 
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B 
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G 
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G 
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G 
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G 

D 
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G 
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D 

B 

A 



Depth-First 
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A 

B 

D 

G 

A 
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G 
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H H 
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D 
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D 
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B 
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G 

A 

B 

D 

G 
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C 

E 

C 

E 

D 

B 
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A 

B 

D 

G 

A 

B 

D 

G 
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C 

E 
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C 
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A 

B 
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G 

A 
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G 
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A 

B 

D 

G 

A 

B 

D 

G 

D 

H H 

C 

E 

I 

J 

C 

E 

I 

E 

D 

B

A 



Depth-First 
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A 

B 

D 

G 

A 

B 

D 

G 

D 
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C 

E 

I 

J 

C 

E 

I 

J 

E 
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Depth-First 
Search  Goal - 
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Current 

A 

B 

D 

G 

A 

B 

D 

G 

D 

H H 

C 

E 

I 

J 

C 

E 

I 

J 

E 

D 

B

A 

GOAL 



Analyzing DFS 

Not Optimal 

Not Complete 

Time Complexity-O(bm)-(m is maximum depth of any 
node) 

Space Complexity-O(bm) 

 



UNIFORM-
COST  

SEARCH 



Fixing BFS To Get An Optimal Path 

Use a priority queue instead of a simple 
queue 
Insert nodes in the increasing order of the 
cost of the path so far 
Guaranteed to find an optimal solution! 
This algorithm is called uniform-cost search 
 



Continued 

Instead of Expanding shallowest node the node n with 
the Lowest Path Cost g(n) is expanded 

Differences  

 --Goal Test is applied to a node when it is selected  
 for expansion 

 --Test is added in case a better path is found to a  
 node currently on frontier 

 



Example 1 





Example 2 
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DFS  Compare 
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Analyzing Uniform Cost Search 

Optimal 
Complete(If Cost of every step exceeds some          
positive constant Ꜫ) 
Time Complexity-O(b1+(c*/Ꜫ)) 
Space Complexity-O(b1+(c*/Ꜫ)) 
UCS examines all the nodes at Goal Depth to 
see if one has a lower cost. 



COMPARISION 



DEPTH - LIMITED  
SEARCH 



 The embarrassing failure of depth-first search in infinite state spaces can 
be alleviated by  supplying depth-first search with a predetermined 
depth limit . 

 That is, nodes at depth are treated as if they have no successors. This 
approach is called  depth-limited search. The depth limit solves the 
infinite-path problem. 

 Depth-limited search can be implemented as a simple modification to 
the general tree or  graph-search algorithm. 

 Notice that depth-limited search can terminate with two kinds of failure:  
 The standard  failure value indicates no solution. 

The cutoff value indicates no solution within the depth  limit. 

DEPTH-LIMITED-SEARCH 



DEPTH-LIMITED SEARCH (EXAMPLE-1) 



 A, 

A 

B C E D 

Limit = 2 

Depth-Limited Search (DLS) 



 A,B, 

A 

B C E D 

F G Limit = 2 

Depth-Limited Search (DLS) 



 A,B,F, 

A 

B C E D 

F G Limit = 2 

Depth-Limited Search (DLS) 



 A,B,F, 

 G, 
A 

B C E D 

F G 
Limit = 2 

Depth-Limited Search (DLS) 



E 

 A,B,F, 

 G, 

 C, 
A 

 
B C D 

F G H Limit = 2 

Depth-Limited Search (DLS) 



E 

 A,B,F, 

 G, 

 C,H, 
A 

 
B C D 

F G H 
Limit = 2 

Depth-Limited Search (DLS) 



 A,B,F, 

 G, 

 C,H, 

 D, 

A 

B C E D 

F G H I J 
Limit = 2 

Depth-Limited Search (DLS) 
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 DLS algorithm returns Failure (no solution) 
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Analysing Depth-Limit Search 

Not Optimal 
Not Complete 
Time Complexity- O(bl) 
Space Complexity-O(bl) 



ITERATIVE 
DEEPENING  
SEARCH 



Iterative Deepening Search 

 It’s a Depth First Search, but it does it one level at a time, gradually 
increasing the limit, until  a goal is found. 

 Combine the benefits of depth-first and breadth-first search 

 Like DFS, modest memory requirements  

 Like BFS, it is complete when branching factor is finite, and optimal 
when the path cost is a  non decreasing function of the dept of the 
node. 



 May seem wasteful because states are generated multiple times 

 But actually not very costly, because nodes at the bottom level are 
generated  only once. 

 In practice, however, the overhead of these multiple expansions is 
small,  because most of the nodes are towards leaves (bottom) of the 
search tree: 

• Thus, the nodes that are evaluated several times (towards top of 
tree) are  in relatively small number. 

 Iterative depending is the preferred uninformed search method when 
the search  space is large and the depth of the solution is unknown 

Iterative Deepening Search 



Iterative Deepening Search with l=0 



Iterative Deepening Search with l=1 



Iterative Deepening Search with l=2 



Iterative Deepening Search with l=3 
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Combines the best of breadth-first and  
depth-first search strategies. 

• Completeness: 

• Time complexity: 

• Space complexity: 

• Optimality: 

Yes, 

O(b d) 

O(bd) 

Yes, if step cost = 1 

Iterative Deepening Search 



■Complete? Yes (b finite) 

■Time? d b1 + (d-1)b2 + … + bd = O(bd) 

■Space? O(bd) 

■Optimal? Yes, if step costs identical 

Properties of Iterative Deepening Search 



Both search forward from  
initial state, and  

backwards from goal. 

Stop when the two  
searches meet in 

the  middle. 

Motivation: bd/2 + bd/2 is  
much less than bd Implementation 

Replace the goal test 
with  a check to see 

whether  the frontiers of 
the two  searches 

intersect, if yes 
 solution is found 

Bidirectional  
Search 

 

 

 
Start Goal 





Bidirectional 
Search 

■ Not always optimal, even if both 
searches are  BFS 

■ Check when each node is expanded 
or selected  for expansion 

■ Can be implemented using BFS or 

iterative  deepening (but at least one 

frontier needs to be  kept in memory) 

■ Significant weakness 

 Space requirement 

■ Time Complexity is good 



Bidirectional 
Search 

■ Problem: how do we search backwards from  
goal?? 

– predecessor of node n = all nodes that have n  
as successor 

– this may not always be easy to compute! 

– if several goal states, apply predecessor  
function to them just as we applied successor  
(only works well if goals are explicitly known;  
may be difficult if goals only characterized  
implicitly). 

– for bidirectional search to work well, there  

must be an efficient way to check whether a  

given node belongs to the other search tree. 

– select a given search algorithm for each half. 



• Completeness: 

• Time complexity: 

• Space complexity: 

• Optimality: 

Yes, 

2*O(b d/2) = O(b d/2)  

O(b m/2) 

Yes 

• To avoid one by one comparison, we need a hash 

table of  size O(b m/2) 

• If hash table is used, the cost of comparison is O(1) 

Bidirectional Search 



Comparison Uninformed Search Strategies 



Unit 2



Knowledge Based Agent  
Central Component of Knowledge Base Agent is 
Knowledge Base 
A knowledge base is a set of sentences. 
Each sentence is expressed in a language called a 
knowledge representation language. 
TELL - Add new sentences to the knowledge base 
ASK - Query what is known.  
The agent maintains a knowledge base, KB, which 
may initially contain some background knowledge. 

 
 

Examples of sentences 
The moon is made of green cheese 
If A is true then B is true 
A is false 
All humans are mortal 
Confucius is a human 



Each time the agent program is called, it 

does three things.  
 

TELLs the knowledge base what it perceives.  

ASKs the knowledge base what action it should perform.  

The agent program TELLs the knowledge base which 

action was chosen, and the agent executes the action. 

Knowledge Based Agent  

MAKE-PERCEPT-SENTENCE constructs a sentence asserting that 
the agent perceived the given percept at the given time.  
MAKE-ACTION-QUERY constructs a sentence that asks what action 
should be done at the current time. 
MAKE-ACTION-SENTENCE constructs a sentence asserting that the 
chosen action was executed. 



Knowledge Based Agent Algorithm  



Architecture of a knowledge-based agent 

Knowledge Level.  
The most abstract level: describe agent by saying what it knows.  
Example: A taxi agent might know that the Golden Gate Bridge 
connects San Francisco with the Marin County.  

Logical Level.  
The level at which the knowledge is encoded into sentences.  
Example: Links(GoldenGateBridge, SanFrancisco, MarinCounty).  

Implementation Level.  
The physical representation of the sentences in the logical level.  
Example:  ‘(links goldengatebridge sanfrancisco 
marincounty) 



The Inference engine derives new sentences from the input 

and KB 

The inference mechanism depends on representation in KB 

The agent operates as follows:  

1. It receives percepts from environment 
2. It computes what action it should perform (by IE and KB) 
3. It performs the chosen action (some actions are simply 
inserting inferred new facts into KB).  

 

Knowledge 
Base 

Inference 
Engine 

Input from 
environment 

Output 
(actions) 

Learning 
(KB update) 



The Wumpus World environment  

The Wumpus computer game 
The agent explores a cave consisting of rooms connected by 
passageways.  

Lurking somewhere in the cave is the Wumpus, a 

beast that eats any agent that enters its room.  
Some rooms contain bottomless pits that trap any agent that 
wanders into the room.  
Occasionally, there is a heap of gold in a room. 
The goal is: 

 To collect the gold and  exit the world  without 

being eaten 



Agent in a Wumpus world: Percepts  

The agent perceives  

a stench in the square containing the wumpus and in the 
adjacent squares (not diagonally)  
a breeze in the squares adjacent to a pit 
a glitter in the square where the gold is 
a bump, if it walks into a wall 
a woeful scream everywhere in the cave, if the wumpus is 
killed 

The percepts will be given as a five-symbol list: 

 If there is a stench, and a breeze, but 
no glitter, no bump, and no scream, the 
percept is   

[Stench, Breeze, None, None, None]  
The agent can not perceive its own location.  



The actions of the agent in Wumpus game are: 

go forward  

turn right 90 degrees 

turn left 90 degrees 

grab means pick up an object that is in the same square as the agent 

shoot means fire an arrow in a straight line in the direction the agent is looking.  

The arrow continues until it either hits 
and kills the wumpus or hits the wall.  
The agent has only one arrow.  
Only the first shot has any effect.  

climb is used to leave the cave.  

Only effective in start field.  
die, if the agent enters a square with a pit or a live wumpus. 

 (No take-backs!) 



The agent’s  goal 

The agent’s goal is to find the gold and 

bring it back to the start as quickly as 

possible, without getting killed.  
1000 points reward for climbing out of 
the cave with the gold 
1 point deducted for every action taken 
10000 points penalty for getting killed 



Wumpus World description 
Performance measure  gold +1000, death -1000 

-1 per step, -10 for using the arrow  Environment 

Squares adjacent to wumpus are smelly  

Squares adjacent to pit are breezy  Glitter iff 

gold is in the same square  Shooting kills 

wumpus if you are facing it 

The wumpus kills you if in the same square  

Shooting uses up the only arrow 

Grabbing picks up gold if in same square  

Releasing drops the gold in same square  

ActuatorsLeft turn, Right turn, Forward, 

Grab,Release,Shoot,Climb   

SensorsBreeze,Glitter,Stench,Bump, Scream 



The Wumpus agent’s first step 



Later 



Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Exploring a wumpus world 
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Other tight spots 

Breeze in (1,2) and (2,1) 

⇒ no safe actions 

Assuming pits uniformly distributed,  

(2,2) has pit w/ prob 0.86, vs. 0.31 

Smell in (1,1) ⇒ cannot move  Can 

use a strategy ofcoercion: 

shoot straight ahead 

wumpus was there ⇒ dead ⇒ 

safe 

wumpus wasn’t there ⇒ safe 

22/64 



Logic 
 Knowledge bases consist of sentences.  

 These sentences SYNTAX are expressed according to the syntax of the 

representation language, which specifies all the sentences that are well formed.  

 The notion of syntax is clear enough in ordinary arithmetic: “x + y = 4” is a well-

formed sentence, whereas “x4y+ =” is not. 

 Logics are formal languages for representing information  such that conclusions 

can be drawn. 

 Syntax defines the sentences in the language . 

 Semantics define the “meaning” of sentences 

i.e., define truth of a sentence in a world   

E.g., the language of arithmetic 

x + 2 ≥ y is a sentence;  x2 + y > is not a sentence 

x + 2 ≥ y is true iff the number x + 2 is no less than the number y   

x + 2 ≥ y is true in a world where x = 7, y = 1 

x + 2 ≥ y is false in a world where x = 0, y = 6 



Entailment 
The possible models are just all possible assignments of real numbers to the 
variables x and y 

Each such assignment fixes the truth of any sentence of arithmetic whose 
variables are x and y.  

If a sentence α is true in model m, we say that m satisfies α or sometimes 
m is a model of α.  

The notation M(α) to mean the set of all models of α 

Entailment means that one thing follows from another:                            

K B  |=     α  

Knowledge base K B  entails sentence α  

if and only if 

α is true in all worlds where K B  is true 

E.g., the KB containing “the Giants won” and “the Reds won”  entails “Either 

the Giants won or the Reds won” 

E.g., x  + y = 4 entails 4 = x  + y 

Entailment is a relationship between sentences (i.e., syntax)  that is based 

on semantics 



Models 

Given a logical sentence, when is its truth uniquely defined in a world?  

Logicians typically think in terms of models, which are formally  

structured worlds. 

(e.g., full abstract description of a world, configuration of all variables,  

world state) 

We say m is a model of a sentence α if α is true in m   

M (α) is the set of all models of α 

Then KB |= α if and only if M (KB) ⊆ M (α) 

E.g. K B  = Giants won and Reds won 

α = Giants won 



Entailment in the wumpus world 

Situation after detecting nothing in [1,1],  moving 

right, breeze in [2,1] 

 
Consider possible models for ?s  assuming only 

pits 

 
3 Boolean choices ⇒ 8 possible models 
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Wumpus models 

27/64 



Wumpus models 

K B  = wumpus-world rules + observations 
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Wumpus models 

K B  = wumpus-world rules + observations 

α1 = “[1,2] is safe”, K B  |= α1, proved bymodel checking 
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Wumpus models 

K B  = wumpus-world rules + observations 

α2 = “[2,2] is safe”, K B  |= α2 
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Representation, Reasoning, and Logic 

The object of knowledge representation is to express knowledge in a 

computer-tractable form, so that agents can perform well.  

A knowledge representation language is defined by:  

 Its syntax, which defines all possible sequences of symbols 
that constitute sentences of the language.  

Examples: Sentences in a book, bit patterns in computer memory.  

 Its semantics, which determines the facts in the world to 
which the sentences refer.  

Each sentence makes a claim about the world.  

An agent is said to believe a sentence about the world.  



The connection between  

sentences and facts 

Semantics maps sentences in logic to facts in the world. 

The property of one fact following from another is mirrored 

by the property of one sentence being entailed by another. 



Logic as a Knowledge-Representation 

(KR) language 

Propositional Logic 

First Order 

Higher  Order 

Modal 

Fuzzy 

Logic 

Multi-valued 

Logic 

Probabilistic 

Logic 

Temporal Non-monotonic 

Logic 
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Inference 

Inference in the general sense means:  

 Given some pieces of  information (prior, observed 

variabes, knowledge base) what is the  implication (the implied 

information, the posterior) on other things  (non-observed variables, 

sentence) 

 
KB €i α = sentence α can be derived from KB by procedure I 

 

Eg: Consequences of KB are a haystack; α is a needle.   

Entailment = needle in haystack;  

Inference = finding it   

Soundness: i is sound if whenever KB €i α, it is also true that KB |= α 

Completeness: i is complete if whenever KB |= α, it is also true that KB 

€i α 

Preview: we will define a logic (first-order logic) which is expressive enough to say 

almost  anything of interest, and for which there exists a sound and complete 

inference  procedure. That is, the procedure will answer any question whose 

answer follows from  what is known by the KB. 



Summary 

Intelligent agents need knowledge about the world for making good 

decisions. 

The knowledge of an agent is stored in a knowledge base in the form of 

sentences in a knowledge representation language.  

A knowledge-based agent needs a knowledge base and an inference 

mechanism.  

It operates by storing sentences in its knowledge base, 

 Inferring new sentences with the inference mechanism,  

and using them to deduce which actions to take.  

A representation language is defined by its syntax and semantics, which 

specify the structure of sentences and how they relate to the facts of the 

world. 

The interpretation of a sentence is the fact to which it refers.  

If this fact is part of the actual world, then the sentence is 
true. 



Summary  

The process of deriving new sentences from old 

one is called inference.  

Sound inference processes derives true conclusions 
given true premises.  

Complete inference processes derive all true 
conclusions from a set of premises.  

A valid sentence is true in all worlds under all 

interpretations.  

If an implication sentence can be shown to be 

valid, then - given its premise - its consequent can 

be derived.  



PROPOSITIONAL 
LOGIC 



Propositional logic (PL) 

A simple language useful for showing key ideas and definitions  

User defines a set of propositional symbols, like P and Q.  

User defines the semantics of each of these symbols, e.g.: 

P means "It is hot"  

Q means "It is humid"  

R means "It is raining"  

A sentence (aka formula, well-formed formula, wff) defined as:  

A symbol  

If S is a sentence, then ~S is a sentence (e.g., "not”) 

If S is a sentence, then so is (S) 

If S and T are sentences, then (S v T), (S ^ T), (S => T) , and (S <=> 
T) are sentences (e.g., "or," "and," "implies," and "if and only if”)  

A finite number of applications of the above  
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Propositional logic: Syntax 

Propositional logic is the simplest logic—illustrates basic 

ideas   

The proposition symbols P1, P2 etc are sentences 

If S is a sentence, ¬S is a sentence (negation) 

If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)  

If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)  

If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication) 

If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional) 



Propositional logic: 
Complex sentences are constructed from simpler sentences, using 

parentheses and logical COMPLEX SENTENCES connectives.  

There are five connectives in common use: LOGICAL CONNECTIVES  

NEGATION ¬ (not): A sentence such as ¬W1,3 is called the negation of 

W1,3. A literal is either an atomic sentence (a positive literal) or a negated 

atomic sentence (a negative literal).  

CONJUNCTION ∧ (and): A sentence whose main connective is ∧, such 

as W1,3 ∧ P3,1, is called a conjunction; its parts are the conjuncts. (The ∧ 

looks like an “A” for “And.”)  

DISJUNCTION ∨ (or): A sentence using ∨, such as (W1,3∧P3,1)∨W2,2, 

is a disjunction of the disjuncts (W1,3 ∧ P3,1) and W2,2.  

IMPLICATION ⇒ (implies): A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 

is called an implication (or conditional). Its premise or antecedent is 

(W1,3 ∧P3,1), and its conclusion or consequent is ¬W2,2. Implications 

are also known as rules or if–then statements.  

BICONDITIONAL ⇔ (if and only if): The sentence W1,3 ⇔ ¬W2,2 is a 

biconditional.  



Examples of PL sentences 

(P ^ Q) => R  

“If it is hot and humid, then it is raining” 
Q => P  

“If it is humid, then it is hot” 
Q  

“It is humid.” 
A better way: 

Ho = “It is hot” 

Hu = “It is humid” 

R = “It is raining” 



Propositional logic: Syntax grammar 



Propositional logic: Semantics 
Each model specifies true/false for each proposition symbol 

E.g. P1,2 P2,2 P3,1 

True    True      false 

(With these symbols, 8 possible models, can be 

enumerated  automatically.) 

Rules for evaluating truth with respect to a model m: 

¬S  

S1 ∧ S2  

S1 ∨ S2  

S1 ⇒ S2 

i.e., 

S  

S1  

S1  

S1  

S1 

S2  

S2  

S2  

S2 

S1 ⇔ S2 

is true iff  

is true iff  

is true iff  

is true iff  

is false iff  

is true iff S1 ⇒ S2 

is false 

is true and  

is true or  

is false or  

is true and  

is true and S2 ⇒ S1 

is true  

is true  

is true  

is false  

is true 

Simple recursive process evaluates an arbitrary sentence,  

e.g.,¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true 
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Truth tables for connectives 

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q 

false false true false false true true 

false true true false true true false 

true false false false true false false 

true true false true true true true 









A Simple Knowledge Base 

Px,y is true if there is a pit in [x, y].  

Wx,y is true if there is a wumpus in [x, 

y], dead or alive.  

Bx,y is true if the agent perceives a 

breeze in [x, y].  

Sx,y is true if the agent perceives a 

stench in [x, y]. 
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Wumpus world sentences 

Let Pi,j be true if there is a pit in [i, j]. 

Let Bi,j be true if there is a breeze in [i, j]. 

 
¬P1,1 

¬B1,1 

B2,1 

 

“Pits cause breezes in adjacent squares” 
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Wumpus world sentences 

Let Pi,j be true if there is a pit in [i, j]. 

Let Bi,j be true if there is a breeze in [i, j]. 

 
¬P1,1 

¬B1,1 

B2,1 

 

“Pits cause breezes in adjacent squares” 

B1,1  

B2,1 

⇔ 

⇔ 

(P1,2 ∨ P2,1) 

(P1,1 ∨ P2,2 ∨ P3,1) 

“A square is breezy if and only if there is an adjacent pit” 



A Simple Knowledge Base 

There is no pit in [1,1]:  

 R1 : ¬P1,1  

A square is breezy if and only if there is a pit in a 

neighboring square.  

This has to be stated for each square; for now, we include 

just the relevant squares:  

 R2 : B1,1 ⇔ (P1,2 ∨ P2,1)  

 R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)  

The preceding sentences are true in all wumpus worlds.  

Now we include the breeze percepts for the first two 

squares visited in the specific world the agent is in. 

 R4 : ¬B1,1 

 R5 : B2,1 















Logical equivalence 

Two sentences are logically equivalent iff true in same models: 

α ≡ β if and only if α |= β and β |= α 

(α ∧ β) ≡ (β ∧ α) commutativity of ∧ 

(α ∨ β) ≡ (β ∨ α) commutativity of ∨ 

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧ 

((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨ 

¬(¬α) ≡ α double-negation elimination 

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition 

(α ⇒ β) ≡ (¬α ∨ β) implication elimination 

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination 

¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan 

¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan 

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨ 

(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧ 



Validity and satisfiability 

A sentence is valid if it is true in all models, 

e.g., true,  A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B 

Validity is connected to inference via the Deduction Theorem: 

KB |= α if and only if (KB ⇒ α) is valid 

A sentence is satisfiable if it is true in some model   

e.g., R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 is satisfiable for three models 

A sentence is unsatisfiable if it is true in no models   

e.g., A ∧ ¬A 

Satisfiability is connected to inference via the following: 

KB |= α if and only if (KB ∧ ¬α) is unsatisfiable 



INFERENCE 
AND THEOREM 

PROVING 























RESOLUTION 









FORWARD 
CHAINING & 
BACKWARD 
CHAINING 





Forward chaining 

Idea: fire any rule whose 

premises are satisfied in the 

KB,  add its conclusion to 

the KB, until query is found. 

 
P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Forward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 





Backward chaining 

Idea: work backwards from the query q:  to 

prove q by BC, check if q is known already, or 

prove by BC all premises of some rule 

concluding q   

Avoid loops: check if new subgoal is already 
on the goal stack  

Avoid repeated work: check if new subgoal 
has already been proved true, or has already 
failed 





Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 



Backward chaining example 
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4 

P ⇒ Q 

L ∧ M ⇒ P   

B ∧ L ⇒ M   

A ∧ P ⇒ L   

A ∧ B ⇒ L   

A 

B 





Summary 

Logical agents applyinferenceto aknowledge base  to derive new 

information and make decisions 

Basic concepts of logic: 

–syntax: formal structure ofsentences 

–semantics:truthof sentences wrtmodels 

–entailment: necessary truth of one sentence given another 

–inference: deriving sentences from other sentences 

–soundness: derivations produce only entailed sentences 

–completeness: derivations can produce all entailed sentences  

Wumpus world requires the ability to represent partial and negated  

information, reason by cases, etc. 

Forward, backward chaining are linear-time, complete for Horn clauses  

Resolution is complete for propositional logic 

Propositional logic lacks expressive power 



Dictionary: logic in general 

alogic: a language, elements α aresentences, (grammar example:  

slide 34) 

model m: a world/state description that allows us to evaluate 

α(m) ∈ {true, false} uniquely for any sentence 

α, M (α) = {m : α(m) = true} 

entailment α |= β: M (α) ⊆ M (β),“ ∀m : α(m) ⇒ β(m)” 

(Folgerung) 

equivalence α ≡ β: iff (α |= β and β |= α) 

KB: a set of sentences 

inferenceprocedure i can infer α from KB: KB €i α  soundnessof i: KB 

€i α implies KB |= α (Korrektheit)  completenessof i: KB |= α 

implies KB €i α 



Dictionary: propositional logic 

conjunction: α ∧ β,disjunction: α ∨ β,negation: ¬α 

implication: α ⇒ β ≡ ¬α ∨ β,biconditional: 

α ⇔ β ≡ (α ⇒ β) ∧ (β ⇒ α) 

Note: |= and ≡ are statements about sentences in a logic; ⇒ and ⇔ 

are symbols in the grammar of propositional logic 

α valid: true for any model, e.g.: KB |= α iff [(KB ⇒ α) is valid] 

(allgemeingu¨ ltig) 
α unsatisfiable: true for no model, e.g.: KB |= α iff [(KB ∧ ¬α) is  

unsatisfiable] 

literal: A or ¬A,clause: disjunction of literals,CNF: conjunction of  

clauses 

Horn clause: symbol | (conjunction of symbols ⇒ symbol),Horn form: 

conjunction of Horn clauses 

Modus Ponensrule: complete for Horn KBs  α1,...,αn,

 α1∧···∧αn ⇒ β β 

Resolutionrule: complete for propositional logic in CNF, let “ Ai = ¬m j  ”: 
  A1∨···∨Ak, m1∨···∨mn  

A1∨···∨Ai−1∨Ai+1∨···∨Ak∨m1∨···∨mj−1∨mj+1∨···∨mn 



Effective Propositional Model 

Checking 

Two families of efficient algorithms for propositional 
inference based on model checking: 

Mainly used for checking satisfiability 

Complete Backtracking Search Algorithms 

DPLL Algorithm (Davis, Putnam, Logemann, Loveland) 

Incomplete Local Search Algorithms 

WalkSAT Algorithm 

 



Conversion to CNF 

B1,1   (P1,2  P2,1) 
 
Eliminate , replacing   ß with (  ß)(ß  ). 

(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1) 
 

Eliminate , replacing   ß with    ß. 
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 

 
Move  inwards using de Morgan's rules and double-negation: 

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 
 

Apply distributivity law ( over ) and flatten: 
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1) 



The DPLL algorithm 

Determine if an input propositional logic sentence (in CNF) is 
satisfiable. This is just backtracking search for a CSP. 

 
Improvements: 

1. Early termination 
A clause is true if any literal is true. 
A sentence is false if any clause is false. 

 
2. Pure symbol heuristic 

Pure symbol: always appears with the same "sign" in all clauses.  
e.g., In the three clauses (A  B), (B   C), (C  A), A and B are pure, C 

is impure.  
Make a pure symbol literal true. (if there is a model for S, then making a 

pure symbol true is also a model). 
 

3      Unit clause heuristic 
Unit clause: only one literal in the clause 
The only literal in a unit clause must be true. 
 
Note: literals can become a pure symbol or a  
unit clause when other literals obtain truth values.  e.g.                               

( ) ( )A True A B

A pure

   





The DPLL algorithm 

 Determine if an input propositional logic sentence (in 
CNF) is satisfiable by assigning values to variables. 

 
1. Pure symbol heuristic 

Pure symbol: always appears with the same "sign" in all 
clauses.  

e.g., In the three clauses (A  B), (B   C), (C  A), A 
and B are pure, C is impure.  

Assign a pure symbol so that their literals are true. 
 

2. Unit clause heuristic 
Unit clause: only one literal in the clause or only one 

literal which has not yet received a value. The only 
literal in a unit clause must be true. 



The DPLL algorithm 



The WalkSAT algorithm 

Incomplete, local search algorithm. 

Evaluation function: The min-conflict 

heuristic of minimizing the number of 

unsatisfied clauses. 

Steps are taken in the space of complete 

assignments, flipping the truth value of one 

variable at a time. 

Balance between greediness and 

randomness. 

To avoid local minima 



The WalkSAT algorithm 



Hard satisfiability problems 

Consider random 3-CNF sentences. e.g., 

(D  B  C)  (B  A  C)  (C   B  E)  (E  D  B)  (B 

 E  C) 

 

m = number of clauses  

n = number of symbols 

 

Hard problems seem to cluster near 
m/n = 4.3 (critical point) 



Hard satisfiability problems 



Hard satisfiability problems 

Median runtime for 100 satisfiable random 3-CNF sentences, n = 50 



Inference-based agents in the wumpus 

world 

A wumpus-world agent using propositional logic: 

 

P1,1  

W1,1  

Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y)  

Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y) 

W1,1  W1,2  …  W4,4  

W1,1  W1,2  

W1,1  W1,3  

… 

 

 64 distinct proposition symbols, 155 sentences 





KB contains "physics" sentences for 

every single square 

 

For every time t and every location [x,y], 

Lx,y  FacingRightt  Forwardt  Lx+1,y  

 

Rapid proliferation of clauses 

Expressiveness limitation of 

propositional logic 



Maintaining Location and 

Orientation 

KB contains “physics” sentences for every single square 

PL-Wumpus cheats – it keeps x,y & direction variables 
outside the KB. 

To keep them in the KB we would need propositional 
statement for every location.  Also need to add time 
denotation to symbols 

Lt
x,y  FacingRight t  Forward t  Lt

x+1,y  

FacingRight t  TurnLeft t  FacingRight t+1 

We need these statements in the initial KB for every 
location and for every time. 

This is tens of thousands of statements for time steps of 
[0,100] 



Reflex agent with State. 

Formed of logical gates and registers (stores a 
value) 

Inputs are registers holding current percepts 

Outputs are registers giving the action to take 

At each time step, inputs are set and signals 
propagate through the circuit 

Handles time ‘more satisfactorily’ than 
previous agent.  No need for a hundreds of rules 
encoding states 

Circuit-based Agents 



Example Circuit 



Location Circuit 

Need a similar circuit for each location register. 



Unknown Information in Circuits 

Propositions Alive and Lt
x+1,y  are always known 

What about B1,2 ?  Unknown at the beginning of Wumpus world 
simulation.  This is OK in a propositional KB, but not OK in a circuit. 

Use two bits K(B1,2) and K(B1,2) 

If both are false we know nothing!  One of them is set by visiting 
the square. 

K(B1,2)t  K(B1,2)t-1 V (Lt
1,2 ^ Breeze t) 

Pit in 4,4? 

K( P4,4)t  K( B3,4)t V K( B4,3)t 

K( P4,4)t  ( K(B3,4)t ^ K( P2,4)t ^ K( P3,3)t  ) 

V ( K(B4,3)t ^ K( P4,2)t ^ K( P3,3)t  ) 

Hairy Circuits, but still only a constant number of gates 

Note: Assume that Pits cannot be close enough together such 
that you can build a counter example to K(B1,2)t  above 



Example of 2-bit K(x) usage 



Avoid cyclic circuits 

So far all ‘feedback’ loops have a delay.  Why?  Otherwise the circuit 
would go from being acyclic to cyclic 

Physical cyclic circuits do not work and/or are unstable. 

 K(B4,4)
t  K(B4,4)

t-1 V (Lt
4,4 ^ Breeze t) V K(P3,4) 

t V 
K(P4,3) 

t 

K(P3,4) 
t and K(P4,3) 

t  depend on breeziness in adjacent pits, and pits 
depend on more adjacent breeziness.  The circuit would contain 
cycles 

These statements are not wrong, just not representable in a boolean 
circuit 

Thus the corrected acyclic (using direct observation) version is 
incomplete.  The Circuit-based agent might know less than the 
corresponding inference based agent at that time 

Example: B1,1 => B2,2. This is OK for IBA, but not for CBA 

A complete circuit can be built, but it would be much more complex 



IBA vs. CBA 

Conciseness: Neither deals with time very well.  Both are very 
verbose in their own way.  Adding more complex objects will swamp 
both types.  Both are poorly suited to path-finding between safe 
squares (PL-Wumpus uses A* search to get around this) 

Computational Efficiency: Inference can take exponential time in the 
number of symbols.  Evaluating a circuit is linear in size/depth of 
circuit.  However in practice good inference algorithms are very quick 

Completeness: The incompleteness of CBA is deeper than acyclicity.  
For some environments a complete circuit must be exponentially 
larger than the IBA’s KB to execute in linear time.  CBAs also forgets 
knowledge learned in previous times 

Ease: Both agents can require lots and lots of work to build.  Many 
seemingly redundant statements or very large and ugly circuits. 

Hybrid??? 



Summary 

Logical agents apply inference to a knowledge base to derive new information 
and make decisions 

Basic concepts of logic: 

syntax: formal structure of sentences 
semantics: truth of sentences wrt models 
entailment: necessary truth of one sentence given another 
inference: deriving sentences from other sentences 
soundness: derivations produce only entailed sentences 
completeness: derivations can produce all entailed sentences 

Wumpus world requires the ability to represent partial and negated 
information, reason by cases, etc. 

Resolution is complete for propositional logic 
Forward, backward chaining are linear-time, complete for Horn clauses 

Propositional logic lacks expressive power 



Local Search Algorithms and Optimization 

Problems 

 Local search: 

• Use single current state and move to neighboring states. 

 Idea: start with an initial guess at a solution and  incrementally improve 

it until it is one 

 Advantages: 

• Use very little memory 

• Find often reasonable solutions in large or infinite state  spaces. 

 Useful for pure optimization problems. 

• Find or approximate best state according to some objective function 

• Optimal if the space to be searched is convex 
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Local search vs Systematic search 

Systematic search Local search 

Solution Path from initial state to the goal Solution state itself 

Method Systematically trying different paths  from an 

initial state 

Keeping a single or more "current"  states and 

trying to improve them 

State space Usually incremental Complete configuration 

Memory Usually very high Usually very little (constant) 

Time Finding optimal solutions in small  state spaces Finding reasonable solutions in large  or infinite 

(continuous) state spaces 

Scope Search Search & optimization problems 



Understand Local Search 

State- Space Landscape 
Landscape 
 --Location(defined by state) 
 --Elevation(defined by heuristic function) 
If Elevation corresponds to  
 --Cost-Find Lowest Valley (Global Minimum) 
 --Objective Function-Find Highest Peak(Global Maximum) 
A Complete Local Search Algorithm always finds a Goal if one 
exists, Optimal Solution always finds a Global Maximum/Minimum. 
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State- Space Landscape Features 
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Local Search Algorithms 

Hill Climbing Search 
Simulated Annealing Search 
Local Beam Search 
Genetic Algorithms 
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Hill Climbing Search 

Local Search Algorithm 
Steepest-Ascent (Simply a Loop that Continuously moves in 
direction of increasing value-UPHILL) 
Terminates when reaches Peak(No Neighbour has higher value) 
Does not maintain a search tree(only Current State) 
No Back Tracking 
Greedy Local Search(grabs good neighbour without thinking 
other) 
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Hill-climbing search is greedy 

 Greedy local search: considering only one step ahead and  

select the best successor state (steepest ascent) 

 Rapid progress toward a solution 

 Usually quite easy to improve a bad solution 

Optimal when starting  in 

one of these states 



Hill Climbing - Algorithm 

1. Pick a random point in the search space 

2. Consider all the neighbors of the current state 

3. Choose the neighbor with the best quality and move to that 
state. 

4. Repeat 2 to 4 until all the neighboring states are of lower 
quality. 

5. Return the current state as the solution state. 
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Hill climbing example 1 (minimizing h) 

1 2 

3 4 5 
6 7 8 

start goal 

6 hoop = 4         5 

hoop = 3 

hoop = 2 

4 

hoop = 1 

hoop = 0 

hoop = 5 

5 
3 1 2 

4 5 

6 7 8 

3 1 2 

4 5 

6 7 8 

3 1 2 

4 5 8 
6 7 

3 1 2 

4 5 8 
6 7 

3 1 2 

4 5 
6 7 8 

4 
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Hill-climbing Example: n-queens 

 n-queens problem: Put n queens on an n × n  board with no two 

queens on the same row,  column, or diagonal 

 Good heuristic: h = number of pairs of queens  that are attacking 

each other 

h=5 h=3 

(for illustration) 

h=1 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 

S 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

S 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D 

S 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

S 

2/20/2021 17 MGIT-IT-HARINATH 



Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

S 

D 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 

S 

D 

2/20/2021 19 MGIT-IT-HARINATH 



Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

S 

D 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E 

S 

D 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

S 

D 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

S 

D 

E 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 

S 

D 

E 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

S 

D 

E 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F 

S 

D 

E 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

S 

D 

E 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F G 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node G 

S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F G 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F G 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F G 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node 

G 
S --- 

Current Children 

S 𝑫𝟖.𝟗, 𝑨𝟏𝟎.𝟒 

D --- 

D 𝑬𝟔.𝟗, 𝑨𝟏𝟎.𝟒 

E --- 

E 𝑭𝟑.𝟎, 𝑩𝟔.𝟕 

F --- 

F G 

S 

D 

E 

F 
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Hill Climbing  
Goal – Node K  
Local Maxima a --- 

Current Children 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 

a 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

a 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f 

a 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

a 
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Hill Climbing  Goal 
– Node K  Local 

Maxima a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

a 

f 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 

a 

f 

2/20/2021 42 MGIT-IT-HARINATH 



Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 
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a 

f 
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Climbing  
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K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 
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f 

g 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

a 

f 

g --- 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

a 

f 

g --- g 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

a 

f 

g --- 

g 

g 

2/20/2021 47 MGIT-IT-HARINATH 



Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

a 

f 

g --- 

g --- 

g 
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Hill Climbing  
Goal – Node K  
Local Maxima a --- 

Current Children 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

a 

f 

g --- 

g --- 

g 

Search Finished  

No GOAL 
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Hill 
Climbing  

Goal – Node 
K  Local 
Maxima 

a --- 

Current Children 

f 

a 

g 

Search Finished  

No GOAL 

a 𝒇𝟕, 𝒋𝟖,𝒃𝟏𝟎 

f --- 

f 𝒈𝟑, 𝒆𝟓 

g --- 

g --- 
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Drawbacks of Hill climbing 

  Local Maxima: peaks that aren’t the highest  point in the space 

  Plateaus: the space has a broad flat region that  gives the search 
algorithm no direction  (random walk) 

  Ridges: dropoffs to the sides; steps to the  North, East, South and 
West may go down, but  a step to the NW may go up. 
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Variations of Hill Climbing 
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Stochastic Hill Climbing- Chooses at random from among 
uphill moves 
First Choice Hill Climbing- Generating successors randomly 
until one is generated that is better than current state. 
Random Restart Hill Climbing- Conducts Series of Hill 
Climbing Searches from randomly generated initial states till 
goal is found 

Success of Hill Climbing depends very much on the 
shape of the State Space LandScape 
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Simulated Annealing 

Variant of hill climbing (so up is good) 

Tries to explore enough of the search space early on, so 
that the final solution is less sensitive to the start state 

SA hill-climbing can avoid becoming trapped at local 
maxima. 

May make some downhill moves before finding a good 
way to move uphill. 



Simulated Annealing (SA) Search 

Hill climbing: move to a better state 

 Efficient, but incomplete (can stuck in local maxima) 

Random walk: move to a random successor 

 Asymptotically complete, but extremely inefficient 

 
 Idea: Escape local maxima by allowing some "bad“ moves but 

gradually decrease their frequency. 

 More exploration at start and gradually hill-climbing become more 

frequently selected strategy. 
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Simulated Annealing 

Comes from the physical process of annealing in which substances 
are raised to high energy levels (melted) and then cooled to solid 
state. 
 
 
 
 
 
 

 

The probability of moving to a higher energy state, instead of lower is   

              p = e^(-E/kT)  

where E is the positive change in energy level, T is the temperature, and k is 
Bolzmann’s constant. 

heat                                                          cool 



MGIT-IT-HARINATH 2/20/2021 56 

Simulated Annealing 

At the beginning, the temperature is high. 

As the temperature becomes lower 

  kT becomes lower 

  E/kT gets bigger 

  (-E/kT) gets smaller 

  e^(-E/kT) gets smaller 

As the process continues, the probability of a downhill 
move gets smaller and smaller. 
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For Simulated Annealing 

E represents the change in the value of the objective function. 

 

Since the physical relationships no longer apply, drop k.   So p = 
e^(-E/T)  

 

We need an annealing schedule, which is a sequence of values 
of T: T0, T1, T2, ... 
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function SIMULATED-ANNEALING( problem, schedule) returns a solution state 

input: problem, a problem 

   schedule, a mapping from time to “temperature” 

 

current  MAKE-NODE(problem.INITIAL-STATE) 

for t  1 to ∞ do 

T  schedule(t) 

if T = 0 then return current 

next  a randomly selected successor of current 

∆E  next.VALUE – current.VALUE 

if ∆E > 0 then current  next                             /* better than current */ 

else current  next only with probability e∆E /T 

Simulated Annealing Algorithm 



Simulated Annealing 

Inner most loop similar to Hill- Climbing 

Instead of Picking Best Move, it picks Random Move 

If Move improves the situation, it is always accepted 

The probability decreases exponentially with the badness of the move 

The probability also decreases as the temperature T goes down. 

Bad Moves are more likely to be allowed at the start when T is High and 
they become unlikely as T decreases. 

If schedule lowers T slowly enough, the algorithm will find a Global 
Optimum with Probability approaching 1. 
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Simulated Annealing Applications 
Basic Problems 
Traveling salesman 
Graph partitioning 
Matching problems 
Graph coloring 
Scheduling 

Engineering 
VLSI design 

Placement 
Routing 
Array logic minimization 
Layout 

Facilities layout 
Image processing 
Code design in information theory 



Local search in continuous spaces 



Gradient ascent 

xt 1  xt  f (xt ) 

Local search problems also in continuous spaces 
Random restarts and simulated annealing can be useful 

Higher dimensions raises the rate of getting lost 



Adjusting Gradient descent  
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Searching with Nondeterministic Actions 

Vacuum World (actions = {left, right, suck}) 
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Searching with Nondeterministic Actions 

 In the nondeterministic case, the result of an action can vary. 

 

Erratic Vacuum World:  

 When sucking a dirty square, it cleans it and sometimes 
cleans up dirt in an adjacent square. 

 

 When sucking a clean square, it sometimes deposits dirt on 
the carpet. 
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Generalization of State-Space Model 

1. Generalize the transition function to return a set of 
possible outcomes. 

oldf: S x A -> S     newf: S x A -> 2S 

2. Generalize the solution to a contingency plan.  

if state=s then action-set-1 else action-set-2 

3. Generalize the search tree to an AND-OR tree. 
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AND-OR Search Tree 

AND 

Node 

OR 

Node 
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Searching with Partial Observations 

 The agent does not always know its state! 

 

 Instead, it maintains a belief state: a set of possible states it 
might be in.  

 

 Example: a robot can be used to build a map of a hostile 
environment. It will have sensors that allow it to “see” the 
world. 
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Belief State Space for Sensorless Agent  

 initial      state 

Knows it’s  

on the right. 
 

 

Knows it’s 

on the left 

Knows left 

side clean 
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Definition 

• A constraint satisfaction problem consists of three components,  

  X, D, and C:  

• X is a set of variables, {X1,...,Xn}.  

• D is a set of domains, {D1,...,Dn}, one for each variable. 

• C is a set of constraints that specify allowable combinations of 
values.  

• Each domain Di consists of a set of allowable values, {v1,...,vk} 
for variable Xi.  

• Each constraint Ci consists of a pair {scope, rel}  

• scope is a tuple of variables that participate in the constraint  

• rel is a relation that defines the values that those variables can 
take on. 



Constraint satisfaction  problems 

 For example, if X1 and X2 both have the domain 
{A,B} 

 The constraint saying the two variables must have 
different values can be written as  

 {(X1, X2), [(A, B),(B,A)]} or  

 {(X1, X2), X1 ≠ X2} 

 A state is defined as an assignment of values to some 
or  all variables. 

 Consistent assignment: assignment does not  violate  
the constraints. 



Constraint satisfaction  problems 

 An assignment is complete when every value is  
mentioned. 

 A solution to a CSP is a complete assignment that  
satisfies all constraints. 

 Some CSPs require a solution that maximizes an 

objective function. 

 Applications: Scheduling the time of observations on 
the  Hubble Space Telescope, Floor planning, Map 
coloring,  Cryptography 



CSP example: Map Coloring 

Variables: WA, NT, Q, NSW, V, SA, T 

Domains: Di={red,green,blue} 

Constraints:adjacent regions must have different colors. 

E.g. WA  NT (if the language allows this) 

E.g. (WA,NT) = {(red,green),(red,blue),(green,red),…} 



CSP example: Map Coloring 

Solutions are assignments satisfying all constraints 

e.g. 

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue, 

T=green} 



Constraint graph 
CSP benefits 

Standard representation pattern   

Generic goal and successor functions 

Generic heuristics (no domain 
specific expertise). 

Constraint graph = nodes are variables, 

edges show constraints. 

Graph can be used to simplify search. 

e.g. Tasmania is an independent subproblem. 



 Discrete variables 
Finite domains; size d  O(d n) complete assignments. 

 E.g. Boolean CSPs,Map Coloring, Job Scheduling. 

Infinite domains (integers, strings, etc.) 

 E.g. job scheduling, variables are start/end days for each job 

 Need a constraint language e.g StartJob1 +5 ≤ StartJob3. 

 Linear constraints solvable, nonlinear undecidable. 

 Continuous variables 
e.g. start/end times for Hubble Telescope observations. 

Linear constraints solvable in poly time by LP methods. 

Varieties of CSPs 



Varieties of constraints 

• Unary constraints involve a single variable,  

– e.g., SA ≠ green 

 

• Binary constraints involve pairs of variables, 

– e.g., SA ≠ WA 

 

• Higher-order constraints involve 3 or more variables, 

– e.g., SA ≠ WA ≠ NT,cryptharithmetic column constraints. 



Example: Cryptharithmetic 

• Variables: F T U W R O X1 X2 X3 

• Domains: {0,1,2,3,4,5,6,7,8,9} 

• Constraints: Alldiff (F,T,U,W,R,O) 
– O + O = R + 10 · X1 

– X1 + W + W = U + 10 · X2 

– X2 + T + T = O + 10 · X3 

– X3 = F, T ≠ 0, F ≠ 0 



Example: Cryptarithmetic 
•Variables 

D, E, M, N, O, R, S, Y 

•Domains 

{0, 1, 2, 3 ,4, 5, 6, 7, 8, 9 } 

•Constraints 

M ≠ 0, S ≠ 0 (unary constraints)   

Y = D + E   OR   Y = D + E – 10. 

D ≠E, D ≠ M, D ≠ N, etc. 

    S E N D 

+ M O R E  

M O N E Y 



In regular state-space search:  
 An algorithm can do only one thing: search.  
In CSPs there is a choice:  
 An algorithm can search or  
 do a specific type of inference called constraint 
propagation, using the constraints to reduce the number of legal 
values for a variable, which in turn can reduce the legal values 
for another variable, and so on.  

 
Constraint propagation may be intertwined with search, or it 
may be done as a preprocessing step, before search starts.  

 
Sometimes this preprocessing can solve the whole problem, 
so no search is required at all. 

Constraint Propagation 



 
Constraint Propagation 

•V = variable being assigned at the current  level 
of the search 

•Set variable V to a value in D(V) 

•For every variable V’ connected to V: 
–Remove the values in D(V’) that are inconsistent  with 
the assigned variables 

–For every variable V” connected to V’: 
•Remove the values in D(V”) that are no longer  possible 
candidates 

•And do this again with the variables connected to V” 

–……..until no more values can be  discarded 



Local Consistency 

• The key idea is local consistency.  

• If we treat each variable as a node in a graph 
and each binary constraint as an arc. 

• The process of enforcing local consistency in 
each part of the graph causes inconsistent 
values to be eliminated throughout the graph.  



Node Consistency 

• Node consistency: 

  A single variable (corresponding to a node in the CSP 
network) is node-consistent if all the values in the variable’s 
domain satisfy the variable’s unary constraints. 

Eg:The variable SA starts with domain {red, green, blue}, and we 
can make it node consistent by eliminating green, leaving SA 
with the reduced domain {red, blue}. 

 Network is node-consistent if every variable in the network is 
node-consistent. 

 It is always possible to eliminate all the unary constraints in a 
CSP by running node consistency.  

 It is also possible to transform all n-ary constraints into binary 
ones. 



Arc Consistency 

• Arc consistency: 

 A variable in a CSP is arc-consistent if every 
value in its domain satisfies the variable’s 
binary constraints. 

 Xi is arc-consistent with respect to another 
variable Xj if for every value in the current 
domain Di there is some value in the domain 
Dj that satisfies the binary constraint on the 
arc (Xi, Xj ). 



Arc consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 
for every value x of X  there is some allowed y 

constraint propagation propagates arc consistency on the graph. 



Arc consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 
for every value x of X there is some allowed y 



Arc consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 
for every value x of X there is some allowed y 

 

 

 

 

 

 

 

• If X loses a value, neighbors of X need to be rechecked 



Arc consistency 

• Simplest form of propagation makes each arc consistent 

• X Y is consistent iff 
for every value x of X there is some allowed y 

 

 

 

 

 

 

• If X loses a value, neighbors of X need to be rechecked 

• Arc consistency detects failure earlier than forward checking 

• Can be run as a preprocessor or after each assignment 

        Time complexity: O(n2d3) 



Path consistency 

• Arc consistency reduces the domains of variables,  

– sometimes finding a solution (by reducing every domain to 
size 1) and  

– sometimes finding that the CSP cannot be solved (by 
reducing some domain to size 0).  

• Eg: Map-coloring problem on Australia, but with only two colors 
allowed, red and blue.  

• Arc consistency can do nothing because every variable is 
already arc consistent: each can be red with blue at the other 
end of the arc (or vice versa).  

• But clearly there is no solution to the problem: because 
Western Australia, Northern Territory and South Australia all 
touch each other, we need at least three colors for them alone. 



Path consistency 

• Arc consistency tightens down the domains (unary 
constraints) using the arcs (binary constraints). 

• Path consistency tightens the binary constraints by using 
implicit constraints that are inferred by looking at triples of 
variables. 

• A two-variable set {Xi, Xj} is path-consistent with respect 
to a third variable Xm if, for every assignment {Xi = a, Xj = 
b} consistent with the constraints on {Xi, Xj}, there is an 
assignment to Xm that satisfies the constraints on {Xi, Xm} 
and {Xm, Xj}.  

• This is called path consistency because one can think of it 
as looking at a path from Xi to Xj with Xm in the middle. 



Continued… 

• In this case, there are only two: {WA = red, SA = 
blue} and {WA = blue, SA = red}.  

• With both of these assignments NT can be 
neither red nor blue (because it would conflict 
with either WA or SA).  

• Because there is no valid choice for NT, we 
eliminate both assignments, and we end up 
with no valid assignments for {WA, SA}. 



K-consistency 

• Stronger forms of propagation can be defined with the 
notion of k-consistency.  

• A CSP is k-consistent if, for any set of k − 1 variables 
and for any consistent assignment to those variables, 
a consistent value can always be assigned to any kth 
variable. 

• 1-consistency says that, given the empty set, we can 
make any set of one variable consistent: this is what we 
called node consistency.  

• 2-consistency is the same as arc consistency.  
• For binary constraint networks, 3-consistency is the 

same as path consistency. 



Continued… 

• A CSP is strongly k-consistent if it is k-
consistent and is also (k − 1)-consistent, (k − 
2)-consistent,... all the way down to 1-
consistent.  



Global constraints 

• Global constraint is one involving an arbitrary number 
of variables. 

• Global constraints occur frequently in real problems 
and can be handled by special-purpose algorithms that 
are more efficient than the general-purpose methods. 

• For example, the Alldiff constraint says that all the 
variables involved must have distinct values 

• One simple form of inconsistency detection for Alldiff 
constraints works as follows:  
– if m variables are involved in the constraint, and if they 

have n possible distinct values altogether, and m>n, then 
the constraint cannot be satisfied. 



Continued… 

• Another important higher-order constraint is the resource 
constraint, sometimes called the atmost constraint. 

• Eg: In a scheduling problem, let P1,...,P4 denote the 
numbers of personnel assigned to each of four tasks.  

• The constraint that no more than 10 personnel are 
assigned in total is written as Atmost(10, P1, P2, P3, P4). 

• Special propagation algorithms 

Bound propagation 
– E.g., number of people on two flight D1 = [0, 165] and D2 = [0, 385] 

– Constraint that the total number of people has to be at least 420 

– Propagating bounds constraints yields D1 = [35, 165] and D2 = [255, 385] 

 



CSP as a standard search  problem 

 A CSP can easily expressed as a standard search  

problem. 

 Incremental formulation 
 Initial State: the empty assignment {}. 

 Successor function: Assign value to unassigned  

variable provided that there is not conflict. 

 Goal test: the current assignment is complete. 

 Path cost: as constant cost for every step. 
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Standard search formulation 

Let’s try the standard search formulation. 

 

We need: 

• Initial state: none of the variables has a value (color) 

• Successor state: one of the variables without a value will get some value. 

• Goal: all variables have a value and none of the constraints is violated. 

N! x D^N 

N layers 
WA NT T WA WA 

WA 

NT 

WA 

NT 

WA 

NT 

NxD 

[NxD]x[(N-1)xD] 

NT 

WA 

Equal! 

There are N! x D^N nodes in the tree but only D^N distinct states?? 
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Backtracking (Depth-First) search 

WA WA WA 

WA 

NT 

WA 

NT 

D 

D^2 

• Special property of CSPs: They are commutative: 

  This means: the order in which we assign variables 

   does not matter. 

• Better search tree: First order variables, then assign them values one-by-one.  

WA 

NT 

NT 

WA 
= 

WA 

NT 

D^N 



Backtracking search 

 Depth-first search 

 Chooses values for one variable at a time and  

backtracks when a variable has no legal values  

left to assign. 

 Uninformed algorithm 
 No good general performance 

 



Backtracking search 

function BACKTRACKING-SEARCH(csp) return a solution or failure 

return RECURSIVE-BACKTRACKING({} , csp) 

 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 

if assignment is complete then return assignment 

var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 

if value is consistent with assignment according to CONSTRAINTS[csp] then 

add {var=value} to assignment 

result  RRECURSIVE-BACTRACKING(assignment, csp) 

if result  failure then return result 

remove {var=value} from assignment 

return failure 



Backtracking example 



Backtracking example 



Backtracking example 



Backtracking example 



Improving backtracking efficiency 

 Previous improvements  introduce heuristics 

 General-purpose methods can give huge gains in  

speed: 
 Which variable should be assigned next? 

 In what order should its values be tried? 

 Can we detect inevitable failure early? 

 Can we take advantage of problem structure? 



Minimum remaining values 

var  SELECTUNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp) 

A.k.a. most constrained variable heuristic 

Rule: choose variable with the fewest legal moves 

Which variable shall we try first? 



Degree heuristic 

Use degree heuristic 

Rule: Select variable that is involved in the largest number of  
constraints on other unassigned variables. 

Degree heuristic is very useful as a tie breaker. 

In what order should its values be tried? 



Least constraining value 

Least constraining value heuristic 

Rule: given a variable choose the least constraining value i.e. the one  
that leaves the maximum flexibility for subsequent variable assignments. 



Forward checking 

Can we detect inevitable failure early? 
And avoid it later? 

Forward checking idea: keep track of remaining legal values for  
unassigned variables. 

Terminate search when any variable has no legal values. 



Forward checking 

Assign {WA=red} 

Effects on other variables connected by constraints with WA 

NT can no longer be red  

SA can no longer be red 



Forward checking 

Assign {Q=green} 

Effects on other variables connected by constraints with WA 

NT can no longer be green   

NSW can no longer be green   

SA can no longer be green 

MRV heuristic will automatically select NT and SA next, why? 



Forward checking 

If V is assigned blue 

Effects on other variables connected by constraints with WA 

SA is empty 

NSW can no longer be blue 

FC has detected that partial assignment is inconsistent with the 
constraints  and backtracking can occur. 



Local search for CSP 

 Use complete-state representation 

 For CSPs 
 allow states with unsatisfied constraints 

 operators reassign variable values 

 Variable selection: randomly select any 
conflicted  variable 

 Value selection: min-conflicts heuristic 
Select new value that results in a minimum 

number of  conflicts with the other 

variables 



Local search for CSP 



Min-conflicts example 1 

h=5 h=3 h=1 

Use of min-conflicts heuristic in hill-climbing. 



Min-conflicts example 2 

A two-step solution for an 8-queens problem using min-conflicts  
heuristic. 

At each stage a queen is chosen for reassignment in its column. 

The algorithm moves the queen to the min-conflict square breaking  
ties randomly. 





Problem structure 

How can the problem structure help to find a solution quickly? 

Subproblem identification is important: 
Coloring Tasmania and mainland are independent 

Subproblems Identifiable as connected components of constrained graph.

Improves performance 



Tree-structured CSPs 

Theorem: if the constraint graph has no loops then CSP can be  

solved in O(nd 2) time 

Compare difference with general CSP, where worst case is O(d n) 



Tree-structured CSPs 

In most cases subproblems of a CSP are connected as a tree 

Any tree-structured CSP can be solved in time linear in the number of  variables. 

Choose a variable as root, order variables from root to leaves such 
that  every node’s parent precedes it in the ordering. 

For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj) 

For j from 1 to n assign Xj consistently with Parent(Xj ) 



Nearly tree-structured CSPs 

 Can more general constraint graphs be reduced to trees? 

 Two approaches: 
 Remove certain nodes 

 Collapse certain nodes 



Nearly tree-structured CSPs 

Idea: assign values to some variables so that the remaining variables  
form a tree. 

Assume that we assign {SA=x}  cycle cutset 

And remove any values from the other variables that are  inconsistent. 

The selected value for SA could be the wrong one so we have to  try 
all of them 



Nearly tree-structured CSPs 

This approach is worthwhile if cycle cutset is small.  

Finding the smallest cycle cutset is NP-hard 

Approximation algorithms exist 

This approach is called cutset conditioning. 



Nearly tree-structured CSPs 

Tree decomposition of the  
constraint graph in a set of  
connected subproblems. 

Each subproblem is solved  
independently 

Resulting solutions are combined. 

Necessary requirements: 

Every variable appears in 
atleast one of the subproblems. 

If two variables are connected  
in the original problem, they  
must appear together in atleast 
one subproblem. 

If a variable appears in two  
subproblems, it must appear in  
each node on the path. 



• Constraint satisfaction problems (CSPs) represent a state with a set of variable/value pairs 
and represent the conditions for a solution by a set of constraints on the variables. Many 
important real-world problems can be described as CSPs.  

• A number of inference techniques use the constraints to infer which variable/value pairs are 
consistent and which are not. These include node, arc, path, and k-consistency.  

• Backtracking search, a form of depth-first search, is commonly used for solving CSPs. 
Inference can be interwoven with search.  

• The minimum-remaining-values and degree heuristics are domain-independent methods for 
deciding which variable to choose next in a backtracking search. The leastconstraining-value 
heuristic helps in deciding which value to try first for a given variable. Backtracking occurs 
when no legal assignment can be found for a variable. Conflict-directed backjumping 
backtracks directly to the source of the problem.  

• Local search using the min-conflicts heuristic has also been applied to constraint satisfaction 
problems with great success.  

• The complexity of solving a CSP is strongly related to the structure of its constraint graph. 
Tree-structured problems can be solved in linear time. Cutset conditioning can reduce a 
general CSP to a tree-structured one and is quite efficient if a small cutset can be found. Tree 
decomposition techniques transform the CSP into a tree of subproblems and are efficient if 
the tree width of the constraint graph is small. 



Thank 

You 















Preposition Logic
Forward & Backward Chaining

Probability Bayes Theorem



Forward Chaining and backward chaining in AI

In artificial intelligence, forward and backward chaining is one of 
the important topics, but before understanding forward and 
backward chaining lets first understand that from where these two 
terms came.

Inference engine:
The inference engine is the component of the intelligent system in 
artificial intelligence, which applies logical rules to the knowledge 
base to infer new information from known facts. The first 
inference engine was part of the expert system. Inference engine 
commonly proceeds in two modes, which are:
1.Forward chaining (Data driven approach)
2. Backward chaining (Goal driven approach)



Horn Clause and Definite clause:
Horn clause and definite clause are the forms of sentences, which 
enables knowledge base to use a more restricted and efficient 
inference algorithm. 

Logical inference algorithms use forward and backward chaining 
approaches, which require KB in the form of the first-order definite 
clause.

Definite clause: A clause which is a disjunction of literals with exactly 
one positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most 
one positive literal is known as horn clause. Hence all the definite 
clauses are horn clauses.
Example: (¬ p V ¬ q V k). It has only one positive literal k.
It is equivalent to p ∧ q → k.



A. Forward Chaining:

Forward chaining is also known as a forward deduction or forward 
reasoning method when using an inference engine. 

Forward chaining is a form of reasoning which start with atomic 
sentences in the knowledge base and applies inference rules (Modus 
Ponens) in the forward direction to extract more data until a goal is 
reached.

The Forward-chaining algorithm starts from known facts, triggers all 
rules whose premises are satisfied, and add their conclusion to the 
known facts. This process repeats until the problem is solved.



Properties of Forward-Chaining:

•It is a down-up approach, as it moves from bottom to top.
•It is a process of making a conclusion based on known facts or 
data, by starting from the initial state and reaches the goal state.
•Forward-chaining approach is also called as data-driven as we 
reach to the goal using available data.
•Forward -chaining approach is commonly used in the expert 
system, such as CLIPS, business, and production rule systems.



Example:

"As per the law, it is a crime for an American to sell 
weapons to hostile nations. Country A, an enemy 
of America, has some missiles, and all the missiles 
were sold to it by Robert, who is an American 
citizen.“

Prove that "Robert is criminal."



Facts Conversion into FOL:

It is a crime for an American to sell weapons to hostile nations. 
(Let's say p, q, and r are variables)

American (p) ∧weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → 
Criminal(p) ...(1)

Country A has some missiles.
?p Owns(A, p) ∧Missile(p). 

It can be written in two definite clauses by using Existential 
Instantiation, introducing new Constant T1.
Owns(A, T1) ......(2)
Missile(T1) .......(3)



All of the missiles were sold to country A by Robert.
?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) ......(4)

Missiles are weapons.
Missile(p) → Weapons (p) .......(5)

Enemy of America is known as hostile.
Enemy(p, America) →Hostile(p) ........(6)

Country A is an enemy of America.
Enemy (A, America) .........(7)

Robert is American
American(Robert). ..........(8)



Forward chaining proof:

Step-1:

In the first step we will start with the known facts 
and will choose the sentences which do not have 
implications, such as:

American(Robert), Enemy(A, America), 
Owns(A, T1), and Missile(T1). 

All these facts will be represented as below.



Step-2:
At the second step, we will see those facts which infer from 
available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the 
first iteration.
Rule-(2) and (3) are already added.
Rule-(4) satisfy with the substitution {p/T1},

so Sells (Robert, T1, A) is added, which infers from the conjunction 
of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is 
added and which infers from Rule-(7).





Step-3:
At step-3, as we can check Rule-(1) is satisfied with the 
substitution {p/Robert, q/T1, r/A}, so we can add 
Criminal(Robert) which infers all the available facts. And hence we 
reached our goal statement.



B. Backward Chaining:
Backward-chaining is also known as a backward deduction or 
backward reasoning method when using an inference engine. A 
backward chaining algorithm is a form of reasoning, which starts 
with the goal and works backward, chaining through rules to find 
known facts that support the goal.



Properties of backward chaining:

•It is known as a top-down approach.
•Backward-chaining is based on modus ponens inference 
rule.
•In backward chaining, the goal is broken into sub-goal or 
sub-goals to prove the facts true.
•It is called a goal-driven approach, as a list of goals 
decides which rules are selected and used.
•Backward -chaining algorithm is used in game theory, 
automated theorem proving tools, inference engines, 
proof assistants, and various AI applications.
•The backward-chaining method mostly used a depth-first 
search strategy for proof.



Example:

In backward-chaining, we will use the same above example, and 
will rewrite all the rules.

American (p) ∧weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → 
Criminal(p) ...(1)

Owns(A, T1) ........(2)
Missile(T1)

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) ......(4)
Missile(p) → Weapons (p) .......(5)
Enemy(p, America) →Hostile(p) ........(6)
Enemy (A, America) .........(7)
American(Robert). ..........(8)



Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which 
is Criminal(Robert), and then infer further rules.

Step-1:
At the first step, we will take the goal fact. And from the goal fact, 
we will infer other facts, and at last, we will prove those facts true. 
So our goal fact is "Robert is Criminal," so following is the 
predicate of it.



Step-2:
At the second step, we will infer other facts form goal fact 
which satisfies the rules. So as we can see in Rule-1, the goal 
predicate Criminal (Robert) is present with substitution 
{Robert/P}. So we will add all the conjunctive facts below the 
first level and will replace p with Robert.
Here we can see American (Robert) is a fact, so it is proved 
here



Step-3:
At step-3, we will extract further fact Missile(q) which infer from 
Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with 
the substitution of a constant T1 at q.



Step-4:
At step-4, we can infer facts Missile(T1) and Owns(A, T1) form 
Sells(Robert, T1, r) which satisfies the Rule- 4, with the 
substitution of A in place of r. So these two statements are 
proved here.



Step-5:   we can infer the fact Enemy(A, 
America) from Hostile(A) which satisfies Rule- 6. And hence all the 
statements are proved true using backward chaining



Advantages
•It can be used to draw multiple conclusions.
•It provides a good basis for arriving at conclusions.
•It’s more flexible than backward chaining because it 
does not have a limitation on the data derived from it.



Disadvantages
•The process of forward chaining may be time-consuming. 
It may take a lot of time to eliminate and synchronize 
available data.
•Unlike backward chaining, the explanation of facts or 
observations for this type of chaining is not very clear. The 
former uses a goal-driven method that arrives at 
conclusions efficiently.



Advantages
•The result is already known, which makes it easy to 
deduce inferences.
•It’s a quicker method of reasoning than forward 
chaining because the endpoint is available.
•In this type of chaining, correct solutions can be 
derived effectively if pre-determined rules are met by 
the inference engine.
Disadvantages
•The process of reasoning can only start if the endpoint 
is known.
•It doesn’t deduce multiple solutions or answers.
•It only derives data that is needed, which makes it less 
flexible than forward chaining.



Probabilistic reasoning in Artificial intelligence

Uncertainty:
Till now, we have learned knowledge representation using first-
order logic and propositional logic with certainty, which means 
we were sure about the predicates. 

With this knowledge representation, we might write A→B, 
which means if A is true then B is true,

Consider a situation where we are not sure about whether A is 
true or not then we cannot express this statement, this situation 
is called uncertainty.
So to represent uncertain knowledge, where we are not sure 
about the predicates, we need uncertain reasoning or 
probabilistic reasoning.



Causes of uncertainty:

Following are some leading causes of uncertainty to 
occur in the real world.

•Information occurred from unreliable sources.
•Experimental Errors
•Equipment fault
•Temperature variation
•Climate change.



Probabilistic reasoning:
•Probabilistic reasoning is a way of knowledge representation 
where we apply the concept of probability to indicate the 
uncertainty in knowledge. 
•In probabilistic reasoning, we combine probability theory with 
logic to handle the uncertainty.
•We use probability in probabilistic reasoning because it provides a 
way to handle the uncertainty that is the result of someone's 
laziness and ignorance.
•In the real world, there are lots of scenarios, where the certainty 
of something is not confirmed, such as "It will rain today," 
"behavior of someone for some situations," "A match between 
two teams or two players." These are probable sentences for 
which we can assume that it will happen but not sure about it, so 
here we use probabilistic reasoning.



Need of probabilistic reasoning in AI:

•When there are unpredictable outcomes.
•When specifications or possibilities of predicates 
becomes too large to handle.
•When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve 
problems with uncertain knowledge:
•Bayes' rule
•Bayesian Statistics



Probability:
Probability can be defined as a chance that an uncertain 
event will occur. It is the numerical measure of the likelihood 
that an event will occur. The value of probability always 
remains between 0 and 1 that represent ideal uncertainties.



Event: Each possible outcome of a variable is called 
an event.
Sample space: The collection of all possible events is 
called sample space.



Random variables: Random variables are used to 
represent the events and objects in the real world.

Prior probability: The prior probability of an event is 
probability computed before observing new information.

Posterior Probability: The probability that is calculated 
after all evidence or information has taken into account. It 
is a combination of prior probability and new information.



Conditional probability:

•Conditional probability is a probability of occurring an 
event when another event has already happened.

•Let's suppose, we want to calculate the event A when 
event B has already occurred, "the probability of A 
under the conditions of B", it can be written as: P(A/B)

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the 
probability of B, then it will be given as:



If the probability of A is given and we need to find the 
probability of B, then it will be given as:

It can be explained by using the below Venn diagram, 
where B is occurred event, so sample space will be 
reduced to set B, and now we can only calculate event A 
when event B is already occurred by dividing the 
probability of P(A⋀B) by P( B ).



Bayes' theorem in Artificial intelligence

Bayes' theorem:
Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian 
reasoning, which determines the probability of an event with 
uncertain knowledge.

In probability theory, it relates the conditional probability and 
marginal probabilities of two random events.

Bayes' theorem was named after the British mathematician Thomas 
Bayes. The Bayesian inference is an application of Bayes' theorem, 
which is fundamental to Bayesian statistics.



It is a way to calculate the value of P(B|A) with the knowledge of 
P(A|B).

Bayes' theorem allows updating the probability prediction of an 
event by observing new information of the real world.

Example: If cancer corresponds to one's age then by using Bayes' 
theorem, we can determine the probability of cancer more 
accurately with the help of age.
Bayes' theorem can be derived using product rule and conditional 
probability of event A with known event B:
As from product rule we can write:



The above equation (a) is called as Bayes' rule or Bayes' theorem. 
This equation is basic of most modern AI systems for probabilistic 
inference.



•P(A|B) is known as posterior, which we need to calculate, and it 
will be read as Probability of hypothesis A when we have occurred 
an evidence B.

•P(B|A) is called the likelihood, in which we consider that 
hypothesis is true, then we calculate the probability of evidence.

•P(A) is called the prior probability, probability of hypothesis 
before considering the evidence

•P(B) is called marginal probability, pure probability of an 
evidence.



In the equation (a), in general, we can write P (B) = 
P(A)*P(B|Ai), hence the Bayes' rule can be written as:

Where A1, A2, A3,........, An is a set of mutually exclusive 
and exhaustive events.



Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) 
in terms of P(A|B), P(B), and P(A). 

This is very useful in cases where we have a good 
probability of these three terms and want to determine 
the fourth one. 

Suppose we want to perceive the effect of some unknown 
cause, and want to compute that cause, then the Bayes' 
rule becomes:



Example-1:
Question: what is the probability that a patient has 
diseases meningitis with a stiff neck?
Given Data:
A doctor is aware that disease meningitis causes a 
patient to have a stiff neck, and it occurs 80% of the 
time. He is also aware of some more facts, which are 
given as follows:
The Known probability that a patient has meningitis 
disease is 1/30,000.
The Known probability that a patient has a stiff neck is 
2%.



Let a be the proposition that patient has stiff neck and 
b be the proposition that patient has meningitis. , so 
we can calculate the following as:
P(a|b) = 0.8
P(b) = 1/30000

P(a)= .02

Hence, we can assume that 1 patient out of 750 
patients has meningitis disease with a stiff neck.
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Knowledge Representation

● Knowledge representation (KR) is an important issue in

both cognitive science and artificial intelligence.

− In cognitive science, it is concerned with the way people store

and process information and

− In artificial intelligence (AI), main focus is to store knowledge so

that programs can process it and achieve human intelligence.

● There are different ways of representing knowledge e.g.

− predicate logic,

− semantic networks,

− extended semantic net,

− frames,

− conceptual dependency etc.

● In predicate logic, knowledge is represented in the form

of rules and facts as is done in Prolog.



Semantic Network 

• Formalism for representing information about objects,
people, concepts and specific relationship between
them.

• The syntax of semantic net is simple. It is a network of
labeled nodes and links.
− It’s a directed graph with nodes corresponding to concepts,

facts, objects etc. and
− arcs showing relation or association between two concepts.

• The commonly used links in semantic net are of the
following types.
- isa → subclass of entity (e.g., child hospital is subclass of

hospital)
- inst → particular instance of a class (e.g., India is an

instance of country)
- prop → property link (e.g., property of dog is ‘bark)



Representation of Knowledge in Sem Net

“Every human, animal and bird is living thing

who breathe and eat. All birds can fly. All

man and woman are humans who have two

legs. Cat is an animal and has a fur. All

animals have skin and can move. Giraffe is

an animal who is tall and has long legs.

Parrot is a bird and is green in color”.



Representation in Predicate Logic

● Every human, animal and
bird is living thing who
breathe and eat.
X [human(X) → living(X)]

X [animal(X) → living(X)]

X [bird(X) → living(X)]

● All birds are animal and
can fly.
X [bird(X)  canfly(X)]

● Every man and woman
are humans who have two
legs.
X [man(X)  haslegs(X)]

X [woman(X)  haslegs(X)]

X [human(X)  has(X, legs)]

● Cat is an animal and has
a fur.
animal(cat)  has(cat, fur)

● All animals have skin
and can move.
X [animal(X) → has(X,
skin)  canmove(X)]

● Giraffe is an animal who
is tall and has long legs.
animal(giraffe)  has(giraffe,
long_legs)  is(giraffe, tall)

● Parrot is a bird and is
green in color.
bird(parrot)  has(parrot, 
green_colour)



Representation in Semantic Net

  Semantic Net 

         breathe,  eat 

    Living_thing  prop   

    isa    isa   

two legs      isa     fly 

Human   Animal  Bird 

     isa  isa            inst       isa                          inst 

           prop   green 

Man  Woman Giraffe  Cat  Parrot 

                 prop        prop                     prop 

    inst          fur 

john   skin, move  tall, long legs 

 

 

 



Inheritance

● Inheritance mechanism allows knowledge to be
stored at the highest possible level of abstraction
which reduces the size of knowledge base.
− It facilitates inferencing of information associated with

semantic nets.

− It is a natural tool for representing taxonomically structured
information and ensures that all the members and sub-
concepts of a concept share common properties.

− It also helps us to maintain the consistency of the
knowledge base by adding new concepts and members of
existing ones.

● Properties attached to a particular object (class) are
to be inherited by all subclasses and members of
that class.



Property Inheritance Algorithm

Input: Object, and property to be found from Semantic 
Net;

Output:Yes, if the object has the desired property else 
return false;

Procedure:

● Find an object in the semantic net; Found = false;

● While {(object ≠ root) OR Found } DO
{  If there is a a property attribute attached with an object then 

{  Found = true;  Report ‘Yes’} else 

object=inst(object, class) OR isa(object, class)

};

● If Found = False then report ‘No’;   Stop



Coding of Semantic Net in Prolog

Isa facts Instance facts Property facts 

 

isa(living_thing, nil). 

isa(human, living_thing). 

isa(animals, living_thing). 

isa(birds, living_thing). 

isa(man, human ). 

isa(woman, human). 

isa(cat, animal). 

 

inst(john, man). 

inst(giraffe, animal). 

inst(parrot, bird) 

 

prop(breathe, living_thing). 

prop(eat, living_thing). 

prop(two_legs, human). 

prop(skin, animal). 

prop(move, animal). 

prop(fur, bird). 

prop(tall, giraffe). 

prop(long_legs, giraffe). 

prop(tall, animal). 

prop(green, parrot). 

 

 



Inheritance Rules in Prolog

Instance rules: 

instance(X, Y) :- inst(X, Y).

instance (X, Y) :- inst(X, Z), subclass(Z,Y).

Subclass rules:

subclass(X, Y) :- isa(X, Y).

subclass(X, Y) :- isa(X, Z), subclass(Z, Y) .

Property rules:

property(X, Y) :- prop(X, Y).

property(X, Y)     :- instance(Y,Z), property(X, Z).

property(X, Y)     :- subclass(Y, Z), property(X, Z).



Queries

● Is john human?

● Is parrot a living thing?

● Is giraffe an aimal?

● Is woman subclassof 
living thing

● Does parrot fly?

● Does john breathe?

● has parrot fur?

● Does cat fly?

?- instance(john, humans). Y

?- instance (parrot, 
living_thing).                    Y

?- instance (giraffe, animal).Y

?- subclass(woman, 
living_things). Y

?- property(fly, parrot). Y

?- property (john, breathe). Y

?- property(fur, parrot). N

?- property(fly, cat). N



Knowledge Representation using Frames

● Frames are more structured form of packaging
knowledge,
− used for representing objects, concepts etc.

● Frames are organized into hierarchies or network of
frames.

● Lower level frames can inherit information from upper
level frames in network.

● Nodes are connected using links viz.,
− ako / subc (links two class frames, one of which is subclass of

other e.g., science_faculty class is ako of faculty class),

− is_a / inst ( connects a particular instance of a class frame
e.g., Renuka is_a science_faculty)

− a_part_of (connects two class frames one of which is
contained in other e.g., faculty class is_part_of department
class).

− Property link of semantic net is replaced by SLOT fields.



Cont…

● A frame may have any number of slots needed for
describing object. e.g.,
− faculty frame may have name, age, address, qualification etc

as slot names.

● Each frame includes two basic elements : slots and
facets.
− Each slot may contain one or more facets (called fillers)

which may take many forms such as:
▪ value (value of the slot),

▪ default (default value of the slot),

▪ range (indicates the range of integer or enumerated values, a
slot can have),

▪ demons (procedural attachments such as if_needed,
if_deleted, if_added etc.) and

▪ other (may contain rules, other frames, semantic net or any
type of other information).



Frame Network - Example

university

a_part_of

department hostel

a_part_of is_a

faculty nilgiri hostel

ako

science_faculty

is_a

renuka



Detailed Representation of Frame 

Network
frame0

f_name: university

phone: (default: - 011686971)

address : (default - IIT Delhi)

frame1 frame2

f_name : department f_name : hostel

a_part_of : frame0 a_part_of : frame0

programme : [Btech, Mtech, Ph.D] room : (default - 100)

frame11 frame21

f_name: faculty f_name : nilgiri

a_part_of : frame1 is_a : frame2

age : range (25 - 60) phone : 0116862345

nationality: (default - Indian)

qual: (default - Post graduate)

frame12 frame13

f_name : science faculty f_name : renuka

ako : frame11 is_a : frame12

qual : (default - M.Sc) qual : Ph.D

age: 45

adrress: Janak Puri



Description of Frames

● Each frame represents either a class or an
instance.

● Class frame represents a general concept whereas
instance frame represents a specific occurrence of
the class instance.

● Class frame generally have default values which
can be redefined at lower levels.

● If class frame has actual value facet then decedent
frames can not modify that value.

● Value remains unchanged for subclasses and
instances.



Inheritance in Frames

● Suppose we want to know nationality or phone of an
instance-frame frame13 of renuka.

● These informations are not given in this frame.

● Search will start from frame13 in upward direction till
we get our answer or have reached root frame.

● The frames can be easily represented in prolog by
choosing predicate name as frame with two
arguments.

● First argument is the name of the frame and second
argument is a list of slot - facet pair.



Coding of frames in Prolog

frame(university, [phone (default, 011686971), 
address (default, IIT Delhi)]).

frame(deaprtment, [a_part_of (university), 
programme ([Btech, Mtech, Ph.d]))]).

frame(hostel, [a_part_of (university),  room(default, 100)]).

frame(faculty, [a_part_of (department), age(range,25,60), 
nationality(default, indian), qual(default, postgraduate)]).

frame(nilgiri, [is_a (hostel), phone(011686234)]).

frame(science_faculty, [ako (faculty),qual(default, M.Sc.)]).

frame(renuka, [is_a (science_faculty), qual(Ph.D.), 
age(45), address(janakpuri)]).



Inheritance Program in Prolog

find(X, Y) :- frame(X, Z), search(Z, Y), !.

find(X, Y) :- frame(X, [is_a(Z),_]), find(Z, Y), !.

find(X, Y) :- frame(X, [ako(Z), _]), find(Z, Y), !.

find(X, Y) :- frame(X, [a_part_of(Z), _]), find(Z, Y).

● Predicate search will basically retrieve the list of

slots-facet pair and will try to match Y for slot.

● If match is found then its facet value is retrieved

otherwise process is continued till we reach to root

frame



Extended Semantic Network

● In conventional Sem Net, clausal form of logic can
not be expressed.

● Extended Semantic Network (ESNet) combines the
advantages of both logic and semantic network.

● In the ESNet, terms are represented by nodes similar
to Sem Net.

● Binary predicate symbols in clausal logic are
represented by labels on arcs of ESNet.
− An atom of the form “Love(john, mary)” is an arc labeled as

‘Love’ with its two end nodes representing ‘john’ and ‘mary’.

● Conclusions and conditions in clausal form are
represented by different kinds of arcs.
− Conditions are drawn with two lines and conclusions are

drawn with one heavy line .



Examples

● Represent ‘grandfather’ definition

Gfather(X, Y)  Father(X, Z), Parent(Z, Y) in ESNet.

       Z 

     Father            Parent 

 

X       Y 

    Gfather 

 

 



Cont…Example

• Represent clausal rule “Male(X), Female(X) 

Human(X)” using binary representation as

“Isa(X, male), Isa(X, female)  Isa( X, human)” and

subsequently in ESNet as follows:

               male 

      Isa            Isa   

      X  human 

                       Isa 

   female 

 



Inference Rules in ESNet

● Inference rules are embedded in the representation
itself.

● The inference that “for every action of giving, there is
an action of taking” in clausal logic written as

“Action(E, take)  Action(E, give)”.

ESNet    Action 

    E   take 

 

   Action 

    E   give 

 

 

 



Cont…

● The inference rule such as “an actor of taking action is

also the recipient of the action” can be easily

represented in clausal logic as:

− Here E is a variable representing an event where an action of

taking is happening).

Recipient(E, Y)  Acton(E, take), Actor (E, Y)

ESNet              Action  

E    take  

   Recipient 

        Actor 

 

 

Y 

 



Example

● Represent the following clauses of Logic in ESNet.

Recipient(E, Y)  Acton(E, take), Actor (E, Y)

Object (e, apple).

Action(e, take).

Actor (e, john) .

    apple     

     

   Object  

   e   E            Recipient 

 Actor          Action                Actor 

  Action 

         

       john           take   Y 

      

 



Contradiction

• The contradiction in the ESNet arises if we have the 

following situation.

                     Part_of 

         P                             X   

                     

                               Isa 

               Part_of              

                    Y          

                                                                    

        



Deduction in ESNet

● Both of the following inference mechanisms are

available in ESNet.

− Forward reasoning inference (uses bottom up approach)

▪ Bottom Up Inferencing: Given an ESNet, apply the

following reduction (resolution) using modus ponen rule of

logic ({A  B, B} then A).

− Backward reasoning inference (uses top down approach).

▪ Top Down Inferencing: Prove a conclusion from a given

ESNet by adding the denial of the conclusion to the

network and show that the resulting set of clauses in the

network is inconsistent.



Example: Bottom Up Inferencing

 

Given set of clauses 

 

Isa(X, human)  Isa(X, man) 

Isa(john, man). 

Inferencing 

 

Isa(john, human) 

  
         human    

             Isa 

                     

      X 

                  Isa 

         

                                           man 

   

 john  Isa             

 

 Here X is bound to john 

  
         human    

               

                     

        Isa     

 

                    

                    john 

               

 

   

 



Example: Top Down Inferencing

 

Given set of clauses 

 

Isa(X, human)  Isa(X, man) 

Isa(john, man). 

Prove conclusion 

 

Query: Isa(john, human)  

                                         denial of query 

  
         human    

             Isa 

                     

      X 

                  Isa 

         

                                           man 

   

 john  Isa             

    
             human    

             Isa 

                     

      X 

     Isa                 Isa 

         

                                           man 

   

 john  Isa             

 



Cont…

 

    
             human    X = john 

             Isa 
                     

        Isa       

    

           john                          
  

 

Contradiction or Empty network is 

generated. Hence “Isa(john, human)” 

is proved. 

 



Monotonic & Non-Monotonic 
Reasoning



Monotonic Reasoning:

In monotonic reasoning, once the conclusion is taken, 
then it will remain the same even if we add some other 
information to existing information in our knowledge 
base. In monotonic reasoning, adding knowledge does 
not decrease the set of prepositions that can be 
derived.

To solve monotonic problems, we can derive the 
valid conclusion from the available facts only, and it 
will not be affected by new facts.



Monotonic reasoning is used in conventional reasoning systems, 
and a logic-based system is monotonic.

Any theorem proving is an example of monotonic reasoning.

Example:
Earth revolves around the Sun.
It is a true fact, and it cannot be changed even if we add another 
sentence in knowledge base like, "The moon revolves around the 
earth" Or "Earth is not round," etc.



Advantages of Monotonic Reasoning:

In monotonic reasoning, each old proof will always remain valid.
If we deduce some facts from available facts, then it will remain 
valid for always.

Disadvantages of Monotonic Reasoning:
We cannot represent the real world scenarios using Monotonic 
reasoning.

Hypothesis knowledge cannot be expressed with monotonic 
reasoning, which means facts should be true.

Since we can only derive conclusions from the old proofs, so new 
knowledge from the real world cannot be added.



Non-monotonic Reasoning:

In Non-monotonic reasoning, some conclusions may be 
invalidated if we add some more information to our 
knowledge base.
Logic will be said as non-monotonic if some conclusions 
can be invalidated by adding more knowledge into our 
knowledge base.
Non-monotonic reasoning deals with incomplete and 
uncertain models.

"Human perceptions for various things in daily life, "is a 
general example of non-monotonic reasoning.



Example: Let suppose the knowledge base contains the 
following knowledge:

Birds can fly
Penguins cannot fly
Pitty is a bird

So from the above sentences, we can conclude that Pitty can 
fly.

However, if we add one another sentence into knowledge base 
"Pitty is a penguin", which concludes "Pitty cannot fly", so it 
invalidates the above conclusion.



Advantages of Non-monotonic reasoning:
For real-world systems such as Robot navigation, we can use non-
monotonic reasoning.
In Non-monotonic reasoning, we can choose probabilistic facts or 
can make assumptions.
Disadvantages of Non-monotonic Reasoning:
In non-monotonic reasoning, the old facts may be invalidated by 
adding new sentences.
It cannot be used for theorem proving.









Preposition Logic







Resolution by Refutation











Forward Chaining and backward chaining in AI

In artificial intelligence, forward and backward chaining is one of 
the important topics, but before understanding forward and 
backward chaining lets first understand that from where these two 
terms came.

Inference engine:
The inference engine is the component of the intelligent system in 
artificial intelligence, which applies logical rules to the knowledge 
base to infer new information from known facts. The first 
inference engine was part of the expert system. Inference engine 
commonly proceeds in two modes, which are:
1.Forward chaining
2. Backward chaining



Horn Clause and Definite clause:
Horn clause and definite clause are the forms of sentences, which 
enables knowledge base to use a more restricted and efficient 
inference algorithm. 

Logical inference algorithms use forward and backward chaining 
approaches, which require KB in the form of the first-order definite 
clause.

Definite clause: A clause which is a disjunction of literals with exactly 
one positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most 
one positive literal is known as horn clause. Hence all the definite 
clauses are horn clauses.
Example: (¬ p V ¬ q V k). It has only one positive literal k.
It is equivalent to p ∧ q → k.



A. Forward Chaining:

Forward chaining is also known as a forward deduction or forward 
reasoning method when using an inference engine. 

Forward chaining is a form of reasoning which start with atomic 
sentences in the knowledge base and applies inference rules (Modus 
Ponens) in the forward direction to extract more data until a goal is 
reached.

The Forward-chaining algorithm starts from known facts, triggers all 
rules whose premises are satisfied, and add their conclusion to the 
known facts. This process repeats until the problem is solved.



Properties of Forward-Chaining:

•It is a down-up approach, as it moves from bottom to top.
•It is a process of making a conclusion based on known facts or 
data, by starting from the initial state and reaches the goal state.
•Forward-chaining approach is also called as data-driven as we 
reach to the goal using available data.
•Forward -chaining approach is commonly used in the expert 
system, such as CLIPS, business, and production rule systems.



Example:

"As per the law, it is a crime for an American to sell 
weapons to hostile nations. Country A, an enemy 
of America, has some missiles, and all the missiles 
were sold to it by Robert, who is an American 
citizen.“

Prove that "Robert is criminal."



Facts Conversion into FOL:

It is a crime for an American to sell weapons to hostile nations. 
(Let's say p, q, and r are variables)

American (p) ∧weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → 
Criminal(p) ...(1)

Country A has some missiles.
?p Owns(A, p) ∧Missile(p). 

It can be written in two definite clauses by using Existential 
Instantiation, introducing new Constant T1.
Owns(A, T1) ......(2)
Missile(T1) .......(3)



All of the missiles were sold to country A by Robert.
Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) ......(4)

Missiles are weapons.
Missile(p) → Weapons (p) .......(5)

Enemy of America is known as hostile.
Enemy(p, America) →Hostile(p) ........(6)

Country A is an enemy of America.
Enemy (A, America) .........(7)

Robert is American
American(Robert). ..........(8)



Forward chaining proof:

Step-1:

In the first step we will start with the known facts 
and will choose the sentences which do not have 
implications, such as:

American(Robert), Enemy(A, America), 
Owns(A, T1), and Missile(T1). 

All these facts will be represented as below.



Step-2:
At the second step, we will see those facts which infer from 
available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the 
first iteration.
Rule-(2) and (3) are already added.
Rule-(4) satisfy with the substitution {p/T1},

so Sells (Robert, T1, A) is added, which infers from the conjunction 
of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is 
added and which infers from Rule-(7).





Step-3:
At step-3, as we can check Rule-(1) is satisfied with the 
substitution {p/Robert, q/T1, r/A}, so we can add 
Criminal(Robert) which infers all the available facts. And hence we 
reached our goal statement.



B. Backward Chaining:
Backward-chaining is also known as a backward deduction or 
backward reasoning method when using an inference engine. A 
backward chaining algorithm is a form of reasoning, which starts 
with the goal and works backward, chaining through rules to find 
known facts that support the goal.



Properties of backward chaining:

•It is known as a top-down approach.
•Backward-chaining is based on modus ponens inference 
rule.
•In backward chaining, the goal is broken into sub-goal or 
sub-goals to prove the facts true.
•It is called a goal-driven approach, as a list of goals 
decides which rules are selected and used.
•Backward -chaining algorithm is used in game theory, 
automated theorem proving tools, inference engines, 
proof assistants, and various AI applications.
•The backward-chaining method mostly used a depth-first 
search strategy for proof.



Example:

In backward-chaining, we will use the same above example, and 
will rewrite all the rules.

American (p) ∧weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → 
Criminal(p) ...(1)

Owns(A, T1) ........(2)
Missile(T1)

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) ......(4)
Missile(p) → Weapons (p) .......(5)
Enemy(p, America) →Hostile(p) ........(6)
Enemy (A, America) .........(7)
American(Robert). ..........(8)



Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which 
is Criminal(Robert), and then infer further rules.

Step-1:
At the first step, we will take the goal fact. And from the goal fact, 
we will infer other facts, and at last, we will prove those facts true. 
So our goal fact is "Robert is Criminal," so following is the 
predicate of it.



Step-2:
At the second step, we will infer other facts form goal fact 
which satisfies the rules. So as we can see in Rule-1, the goal 
predicate Criminal (Robert) is present with substitution 
{Robert/P}. So we will add all the conjunctive facts below the 
first level and will replace p with Robert.
Here we can see American (Robert) is a fact, so it is proved 
here



Step-3:
At step-3, we will extract further fact Missile(q) which infer from 
Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with 
the substitution of a constant T1 at q.



Step-4:
At step-4, we can infer facts Missile(T1) and Owns(A, T1) form 
Sells(Robert, T1, r) which satisfies the Rule- 4, with the 
substitution of A in place of r. So these two statements are 
proved here.



Step-5:   we can infer the fact Enemy(A, 
America) from Hostile(A) which satisfies Rule- 6. And hence all the 
statements are proved true using backward chaining



Probabilistic reasoning in Artificial intelligence

Uncertainty:
Till now, we have learned knowledge representation using first-
order logic and propositional logic with certainty, which means 
we were sure about the predicates. 

With this knowledge representation, we might write A→B, 
which means if A is true then B is true,

Consider a situation where we are not sure about whether A is 
true or not then we cannot express this statement, this situation 
is called uncertainty.
So to represent uncertain knowledge, where we are not sure 
about the predicates, we need uncertain reasoning or 
probabilistic reasoning.



Causes of uncertainty:

Following are some leading causes of uncertainty to 
occur in the real world.

•Information occurred from unreliable sources.
•Experimental Errors
•Equipment fault
•Temperature variation
•Climate change.



Probabilistic reasoning:
•Probabilistic reasoning is a way of knowledge representation 
where we apply the concept of probability to indicate the 
uncertainty in knowledge. 
•In probabilistic reasoning, we combine probability theory with 
logic to handle the uncertainty.
•We use probability in probabilistic reasoning because it provides a 
way to handle the uncertainty that is the result of someone's 
laziness and ignorance.
•In the real world, there are lots of scenarios, where the certainty 
of something is not confirmed, such as "It will rain today," 
"behavior of someone for some situations," "A match between 
two teams or two players." These are probable sentences for 
which we can assume that it will happen but not sure about it, so 
here we use probabilistic reasoning.



Need of probabilistic reasoning in AI:

•When there are unpredictable outcomes.
•When specifications or possibilities of predicates 
becomes too large to handle.
•When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve 
problems with uncertain knowledge:
•Bayes' rule
•Bayesian Statistics



Probability:
Probability can be defined as a chance that an uncertain 
event will occur. It is the numerical measure of the likelihood 
that an event will occur. The value of probability always 
remains between 0 and 1 that represent ideal uncertainties.



Event: Each possible outcome of a variable is called 
an event.
Sample space: The collection of all possible events is 
called sample space.



Random variables: Random variables are used to 
represent the events and objects in the real world.

Prior probability: The prior probability of an event is 
probability computed before observing new information.

Posterior Probability: The probability that is calculated 
after all evidence or information has taken into account. It 
is a combination of prior probability and new information.



Conditional probability:

•Conditional probability is a probability of occurring an 
event when another event has already happened.

•Let's suppose, we want to calculate the event A when 
event B has already occurred, "the probability of A 
under the conditions of B", it can be written as: 
P(A/B)

Where P(A⋀B)= Joint probability of a and B

P(B)= Marginal probability of B.

If the probability of A is given and we need to find the 
probability of B, then it will be given as:



If the probability of A is given and we need to find the 
probability of B, then it will be given as:

It can be explained by using the below Venn diagram, 
where B is occurred event, so sample space will be 
reduced to set B, and now we can only calculate event A 
when event B is already occurred by dividing the 
probability of P(A⋀B) by P( B ).



Bayes' theorem in Artificial intelligence

Bayes' theorem:
Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian 
reasoning, which determines the probability of an event with 
uncertain knowledge.

In probability theory, it relates the conditional probability and 
marginal probabilities of two random events.

Bayes' theorem was named after the British mathematician Thomas 
Bayes. The Bayesian inference is an application of Bayes' theorem, 
which is fundamental to Bayesian statistics.



It is a way to calculate the value of P(B|A) with the knowledge of 
P(A|B).

Bayes' theorem allows updating the probability prediction of an 
event by observing new information of the real world.

Example: If cancer corresponds to one's age then by using Bayes' 
theorem, we can determine the probability of cancer more 
accurately with the help of age.
Bayes' theorem can be derived using product rule and conditional 
probability of event A with known event B:
As from product rule we can write:



The above equation (a) is called as Bayes' rule or Bayes' theorem. 
This equation is basic of most modern AI systems for probabilistic 
inference.



•P(A|B) is known as posterior, which we need to calculate, and it 
will be read as Probability of hypothesis A when we have occurred 
an evidence B.

•P(B|A) is called the likelihood, in which we consider that 
hypothesis is true, then we calculate the probability of evidence.

•P(A) is called the prior probability, probability of hypothesis 
before considering the evidence

•P(B) is called marginal probability, pure probability of an 
evidence.



In the equation (a), in general, we can write P (B) = 
P(A)*P(B|Ai), hence the Bayes' rule can be written as:

Where A1, A2, A3,........, An is a set of mutually exclusive 
and exhaustive events.



Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A) 
in terms of P(A|B), P(B), and P(A). 

This is very useful in cases where we have a good 
probability of these three terms and want to determine 
the fourth one. 

Suppose we want to perceive the effect of some unknown 
cause, and want to compute that cause, then the Bayes' 
rule becomes:



Example-1:
Question: what is the probability that a patient has 
diseases meningitis with a stiff neck?
Given Data:
A doctor is aware that disease meningitis causes a 
patient to have a stiff neck, and it occurs 80% of the 
time. He is also aware of some more facts, which are 
given as follows:
The Known probability that a patient has meningitis 
disease is 1/30,000.
The Known probability that a patient has a stiff neck is 
2%.



Let a be the proposition that patient has stiff neck and 
b be the proposition that patient has meningitis. , so 
we can calculate the following as:
P(a|b) = 0.8
P(b) = 1/30000

P(a)= .02

Hence, we can assume that 1 patient out of 750 
patients has meningitis disease with a stiff neck.



Applying Bayes' rule:

Bayes' rule allows us to compute the single term 
P(B|A) in terms of P(A|B), P(B), and P(A). 

This is very useful in cases where we have a good 
probability of these three terms and want to 
determine the fourth one. 

Suppose we want to perceive the effect of some 
unknown cause, and want to compute that cause, 
then the Bayes' rule becomes:



Example-2:
Question: From a standard deck of playing cards, a single card is drawn. 
The probability that the card is king is 4/52, then calculate posterior 
probability P(King|Face), which means the drawn face card is a king 
card.



Bayesian Belief Network in artificial intelligence

Bayesian belief network is key computer technology for 
dealing with probabilistic events and to solve a problem 
which has uncertainty. We can define a Bayesian 
network as:

"A Bayesian network is a probabilistic graphical model 
which represents a set of variables and their conditional 
dependencies using a directed acyclic graph."
It is also called a Bayes network, belief network, 
decision network, or Bayesian model.



Bayesian networks are probabilistic, because these networks are 
built from a probability distribution, and also use probability 
theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to 
represent the relationship between multiple events, we need a 
Bayesian network. It can also be used in various tasks 
including prediction, anomaly detection, diagnostics, automated 
insight, reasoning, time series prediction, and decision making 
under uncertainty.



Bayesian Network can be used for building models from data and 
experts opinions, and it consists of two parts:

Directed Acyclic Graph
Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve 
decision problems under uncertain knowledge is known as 
an Influence diagram.



Each node corresponds to the random variables, and a variable 
can be continuous or discrete.
Arc or directed arrows represent the causal relationship or 
conditional probabilities between random variables. These 
directed links or arrows connect the pair of nodes in the graph.



These links represent that one node directly influence the other 
node, and if there is no directed link that means that nodes are 
independent with each other

In the above diagram, A, B, C, and D are random variables 
represented by the nodes of the network graph.
If we are considering node B, which is connected with node 
A by a directed arrow, then node A is called the parent of 
Node B.
Node C is independent of node A.



The Bayesian network has mainly two components:
Causal Component
Actual numbers

Each node in the Bayesian network has condition probability 
distribution P(Xi |Parent(Xi) ), which determines the effect of 
the parent on that node.
Bayesian network is based on Joint probability distribution and 
conditional probability. So let's first understand the joint 
probability distribution:



Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a 
different combination of x1, x2, x3.. xn, are known as Joint 
probability distribution.
P[x1, x2, x3,....., xn], it can be written as the following way in terms 
of the joint probability distribution.
= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]
= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].
In general for each variable Xi, we can write the equation as:



Explanation of Bayesian network:
Let's understand the Bayesian network through an example by 
creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to 
detect burglary. The alarm reliably responds at detecting a 
burglary but also responds for minor earthquakes. Harry has two 
neighbors David and Sophia, who have taken a responsibility to 
inform Harry at work when they hear the alarm. David always calls 
Harry when he hears the alarm, but sometimes he got confused 
with the phone ringing and calls at that time too. On the other 
hand, Sophia likes to listen to high music, so sometimes she 
misses to hear the alarm. Here we would like to compute the 
probability of Burglary Alarm.



Problem:
Calculate the probability that alarm has sounded, but there is neither a 
burglary, nor an earthquake occurred, and David and Sophia both called the 
Harry.

Solution:
The Bayesian network for the above problem is given below. The network 
structure is showing that burglary and earthquake is the parent node of the 
alarm and directly affecting the probability of alarm's going off, but David and 
Sophia's calls depend on alarm probability.
The network is representing that our assumptions do not directly perceive the 
burglary and also do not notice the minor earthquake, and they also not confer 
before calling.
The conditional distributions for each node are given as conditional probabilities 
table or CPT.
Each row in the CPT must be sum to 1 because all the entries in the table 
represent an exhaustive set of cases for the variable.
In CPT, a boolean variable with k boolean parents contains 2K probabilities. 
Hence, if there are two parents, then CPT will contain 4 probability values



List of all events occurring in this network:
Burglary (B)
Earthquake(E)
Alarm(A)
David Calls(D)
Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, 
S, A, B, E], can rewrite the above probability statement using joint probability 
distribution:
P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]
=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]
= P [D| A]. P [ S| A, B, E]. P[ A, B, E]
= P[D | A]. P[ S | A]. P[A| B, E]. P[B, E]
= P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E]





Let's take the observed probability for the Burglary and earthquake 
component:
P(B= True) = 0.002, which is the probability of burglary.
P(B= False)= 0.998, which is the probability of no burglary.
P(E= True)= 0.001, which is the probability of a minor earthquake
P(E= False)= 0.999, Which is the probability that an earthquake not 
occurred.







From the formula of joint distribution, we can write the problem 
statement in the form of probability distribution:
P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P 
(¬E).
= 0.75* 0.91* 0.001* 0.998*0.999
= 0.00068045.
Hence, a Bayesian network can answer any query about the 
domain by using Joint distribution.

Problem:
Calculate the probability that alarm has sounded, but there is neither a 
burglary, nor an earthquake occurred, and David and Sophia both called the 
Harry.



Unit 4



2/20/2021 2HARINATH-IT-MGIT



2/20/2021 3HARINATH-IT-MGIT



2/20/2021 4HARINATH-IT-MGIT



2/20/2021 5HARINATH-IT-MGIT



2/20/2021 6HARINATH-IT-MGIT



2/20/2021 7HARINATH-IT-MGIT



2/20/2021 8HARINATH-IT-MGIT



2/20/2021 9HARINATH-IT-MGIT



2/20/2021 10HARINATH-IT-MGIT



2/20/2021 11HARINATH-IT-MGIT



2/20/2021 12HARINATH-IT-MGIT



2/20/2021 13HARINATH-IT-MGIT



2/20/2021 14HARINATH-IT-MGIT



2/20/2021 15HARINATH-IT-MGIT



2/20/2021 16HARINATH-IT-MGIT





















































































































2/20/2021 2HARINATH-IT-MGIT



2/20/2021 3HARINATH-IT-MGIT



2/20/2021 4HARINATH-IT-MGIT



2/20/2021 5HARINATH-IT-MGIT



2/20/2021 6HARINATH-IT-MGIT



2/20/2021 7HARINATH-IT-MGIT



2/20/2021 8HARINATH-IT-MGIT



2/20/2021 9HARINATH-IT-MGIT



2/20/2021 10HARINATH-IT-MGIT



2/20/2021 11HARINATH-IT-MGIT



2/20/2021 12HARINATH-IT-MGIT



2/20/2021 13HARINATH-IT-MGIT



2/20/2021 14HARINATH-IT-MGIT



2/20/2021 15HARINATH-IT-MGIT



2/20/2021 16HARINATH-IT-MGIT



2/20/2021 17HARINATH-IT-MGIT



2/20/2021 18HARINATH-IT-MGIT



2/20/2021 19HARINATH-IT-MGIT



2/20/2021 20HARINATH-IT-MGIT



2/20/2021 21HARINATH-IT-MGIT



2/20/2021 22HARINATH-IT-MGIT



2/20/2021 23HARINATH-IT-MGIT



2/20/2021 2HARINATH-IT-MGIT



2/20/2021 3HARINATH-IT-MGIT



2/20/2021 4HARINATH-IT-MGIT



2/20/2021 5HARINATH-IT-MGIT



2/20/2021 6HARINATH-IT-MGIT



2/20/2021 7HARINATH-IT-MGIT



2/20/2021 8HARINATH-IT-MGIT



2/20/2021 9HARINATH-IT-MGIT



Unit 5



Expert System Shell























































Expert Systems



What is an Expert System?

• An expert system is computer software(program) that exhibits 
intelligent behavior  and also that attempts to act like a human 
expert on a particular subject area.
It in-corporates the concepts and methods of symbolic inference 
reasoning and the use of knowledge for making these inferences. 
Expert systems also called as knowledge based expert system. 

• Expert systems are often used to advise non-experts in situations 
where a human expert in unavailable (for example it may be too 
expensive to employ a human expert, or it might be a difficult to 
reach location).



How Do Expert Systems Work?

An expert system is made up of three parts:   

• A user interface - This is the system that allows a non-expert 
user to query (question) the expert system, and to receive advice. The user-
interface is designed to be a simple to use as possible.

• A knowledge base - This is a collection of facts and rules. The knowledge 
base is created from information provided by human experts

• An inference engine - This acts rather like a search engine, examining the 
knowledge base for information that matches the user's query

VV IMP



Where Are Expert Systems Used?

• Medical diagnosis (the knowledge base would contain medical 
information, the symptoms of the patient would be used as the query, and 
the advice would be a diagnose of the patient’s illness)

• Playing strategy games like chess against a computer (the knowledge base 
would contain strategies and moves, the player's moves would be used as 
the query, and the output would be the computer's 'expert' moves)

• Providing financial advice - whether to invest in a business, etc. (the 
knowledge base would contain data about the performance of financial 
markets and businesses in the past)

• Helping to identify items such as plants / animals / rocks / etc. (the 
knowledge base would contain characteristics of every item, the details of 
an unknown item would be used as the query, and the advice would be a 
likely identification)

• Helping to discover locations to drill for water / oil (the knowledge base 
would contain characteristics of likely rock formations where oil / water 
could be found, the details of a particular location would be used as the 
query, and the advice would be the likelihood of finding oil / water there)



VV IMP



Knowledge Engineering:

• The process of gathering knowledge from a domain expert and codifying it 
according to the formalism is called knowledge engineering.

• The tasks and responsibilities of a knowledge engineering involve the 
following:

1. Ensuring that the computer has all the knowledge needed to solve a 
problem

2. Choosing one or more forms to represent the required knowledge.

3. Ensuring that the computer can use the knowledge efficiently by 
selecting some of the reasoning methods.



Answers/Solutions

Queries/Questions

Strategies &
Domain Rules

Interaction between Knowledge engineer and domain expert for 
creating an ES

•The main role in knowledge engineer begins only once the problem of 
some domain for developing an ES is decided. The job of the 
knowledge engineer involves close collaboration with the domain 
expert and end user.
•The next step of the process involves a more systematic interviewing 
of the expert. The knowledge engineer will then extract general rules 
from the discussion and interview held with expert and get them 
checked by the expert for correctness.
• The domain knowledge consisting of both formal, textbook 
knowledge and experiential knowledge is entered into the program 
piece by piece

IMP
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Traditional System(Conventional) vs Expert Systems 





Advantages of Expert System:
• Helps in preservation scarce expertise 

• Provides consistent answers for repetitive decisions process 
and tasks.

• Fastens the pace of human professional or semi-professional 
work

• Holds and maintains significant levels of information.

• Provides improved quality of decision making

• Domain experts are not always able to explain their logic and 
reasoning unlike ES

• Encourages organizations to clarify the logic of decision making

• Leads to major internal cost savings within companies

• Causes introduction of new products

• Never forgets to ask questions, unlike human.



DISAdvantages of Expert System:
• Unable to make creative response as human experts would in 

unusual circumstances.

• Lacks common sense needed in some decision making.

• May cause errors in the knowledge base, and lead to wrong 
decisions.

• Cannot adapt to changing environments. Unless knowledge 
base in changed

Languages used in Expert System: 

LISP (List  Processing), Prolog(Programming in Logic), C, C++, 
JAVA etc.







Monotonic TMS:
• The most practical applications of monotonic systems using TMS are 

qualitative simulation, fault diagnosis and search applications.
• A monotonic TMS is general facility for manipulating Boolean 

constraints on proposition symbols. The constraint has the form 
P→Q where P and Q are proposition symbols that an outside 
observer can interpret as representation of the statements.

Functionality of a Monotonic TMS
• A TMS stores a set of Boolean constraints, Boolean 

formulas(premises) and assings truth values to literals that satisfy 
this stored set of constraints.

• A TMS generally consist of the following generic interface funstions:
– Add_constraint
– Follow_Form
– Interface funtions













List of Shells and Tools
• Acquire: It is primarily a knowledge-acquisition system and ES 

shell. Which provides a complete development environment for the 
building and maintenance of knowledge-based application.

• MYCIN: MYCIN was an early backward chaining expert system that 
used artificial intelligence to identify bacteria causing severe 
infections, such as bacteremia and meningitis, and to 
recommend antibiotics, with the dosage adjusted for patient's body 
weight — the name derived from the antibiotics themselves, as 
many antibiotics have the suffix "-mycin". The Mycin system was 
also used for the diagnosis of blood clotting diseases. MYCIN was 
developed over five or six years in the early 1970s at Stanford 
University. It was written in Lispas the doctoral dissertation 
of Edward Shortliffe under the direction of Bruce G. 
Buchanan, Stanley N. Cohen and others.

https://en.wikipedia.org/wiki/Backward_chaining
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Bacteremia
https://en.wikipedia.org/wiki/Meningitis
https://en.wikipedia.org/wiki/Antibiotic
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Lisp_programming_language
https://en.wikipedia.org/wiki/Edward_Shortliffe
https://en.wikipedia.org/wiki/Stanley_N._Cohen


• K-Vision: It is a knowledge acquisition and 
visualization tool. It runs on windows dos etc.

• MailBot: IT is personal e-mail agent that reasd
an e-mail message on standard input and 
creates an e-mail reply to be sent to the 
sender of the original message. It provides 
filtering, forwarding notification and automatic 
question-answering capabilities 


