ARTIFICIAL INTELLIGENCE

Mandatory Course

Unit 1

Infroduction to
Artificial Infelligence

« What is Intelligence?

CS 362 SLIDE 2

Can Machines Thinke?

Can machines think?

e Today, we use computers to control complex processes, for solving
complex problems, decision making, reasoning, natural language . ..

Rodney Brooks i robot Cog, MIT Media Lab

CS 362 SLIDE 3

INTELLIGENCE

What is Intelligence ?

“ability to learn, understand and think”
(Oxford dictionary)

2 Intelligence : “The capacity to learn and solve problems.”

2 Artificial Intelligence : Artificial Intelligence (Al) is the simulation of
human intelligence by machines.

1) The ability to solve problems.
2) The ability to act rationally.
3) The ability to act like humans.

CS 362 SLIDE 4

What is Intelligence<e

What is Intelligence???

* Intelligence is the ability to learn about, to learn from, to understand
about, and interact with one’s environment.

* Intelligence is the faculty of understanding

* Intelligence is not to make no mistakes but quickly to understand how
to make them good

(German Poet)

CS 362 SLIDE 5

Involved in Intelligence

What's involved in Intelligence?

* Ability to interact with the real world
* to perceive, understand, and act
* e.g., speech recognition and understanding and synthesis
* e.g., image understanding
* e.g., ability to take actions, have an effect

* Reasoning and Planning
* modeling the external world, given input
* solving new problems, planning, and making decisions
* ability to deal with unexpected problems, uncertainties

* Learning and Adaptation

* we are continuously learning and adapting

* ourinternal models are always being “updated”
* e.g., a baby learning to categorize and recognize animals

CS 362 SLIDE 6

Intelligent Systems

Intelligent Systems in Your Everyday Life

Post Office
* automatic address recognition and sorting of mail

Banks
* automatic check readers, signature verification systems
* automated loan application classification

Customer Service
* automatic voice recognition

The Web
* |dentifying your age, gender, location, from your Web surfing
* Automated fraud detection

Digital Cameras
* Automated face detection and focusing

CS 362 SLIDE 7

What is Ale<e
What is artificial intelligence? A l

ARTIFICIAL INTELLIGENCE

+ There is MO agreed definition of the term artificial

intelligence. However, there are various definitions that
have been proposed. Some will be considered below.

CS 362 SLIDE 8

Definitions of Al

o AL is a study in which computer systems are made that think like human beings.
Haugeland, 1985 & Bellman, 1978.

o AL is a study in which computer systems are made that act like people. AT is
the art of creating computers that perform functions that require intelligence
when performed by people. Kurzweil, 1990.

o Al is a study in which computers that rationally think are made. Charniac &
McDermott, 1985.

o AL is the study of computations that make it possible o perceive, reason and
act. Winston, 1992.

o AL is the study in which systems that rationally act are made. AT is considered
to be a study that seeks to explain and emulate intelligent behaviour in terms
of computational processes. Schalkeoff, 1990.

o Al is considered to be a branch of computer science that is concerned with
the automation of intelligent behavior. Luger & Stubblefield, 1993.

CS 362 SLIDE 9

Al Systems

Speech synthesis, recognition and understanding
» very useful for limited vocabulary applications
* unconstrained speech understanding is still too hard

Computer vision
* works for constrained problems (hand-written zip-codes)
* understanding real-world, natural scenes is still too hard

Learning
* adaptive systems are used in many applications: have their limits

Planning and Reasoning
* only works for constrained problems: e.g., chess
* real-world is too complex for general systems

Overall:

* many components of intelligent systems are, ‘achievable”
+_there are many interesting research problems remaining

CS 362 SLIDE 10

HI vs Al (Pros)

Pros

Human Intelligence Artificial Intelligence
* Ability to simulate
* Intuition(Sixth sense), Common human behavior and
sense, Judgement, Creativity, cognitive(rational)
Beliefs etc Processes

* Capture and preserve

* The ability to demonstrate their ;
human expertise

intelligence by communicating
* Fast Response. The

effectively ST
, . o ability to comprehend
* Reasoning and Critical thinking large amounts of data

quickly.

CS 362 SLIDE 11

HI vs Al (Cons)

Cons

Human Intelligence Artificial Intelligence
* No “common sense”
* Humans are fallible

* They have limited knowledge bases * Cannot deal with “mixed”

(MS in specialization) knowledge
* Information processing of serial
nature proceed very slowly in the * May have high
brain as compared to computers development costs.
* Humans are unable to retain
large amounts of data in * Raise legal and ethical
memory. concerns

CS 362 SLIDE 12

Boundaries of Al ¢

Systems that think like humans |Systems that think rationally
Systems that act like humans |[Systems that act rationally

“Like ‘D g .
People’ Rationally
. Cognitive Laws of
Think Science Thought
. Rational
Act Turing Test Agents

CS 362 SLIDE 13

What is Al ¢

Systems that think like humans

Systems that think rationality

“"The exciting new effort to make
computers think ... machines with minds,
in the full and literal sense" (Haugeland,
1985)

“"The automation of activities that we
associate with human thinking, activities
such as decision-making, problem
solving, learning ..." (Bellman, 1978)

“The study of mental faculties through the
use of computational models" (Charniak
and McDermott, 1985)

“"The study of the computations that make
it possible to perceive, reason, and act"
(Winston, 1992)

Systems that act like humans

Systems that act like rationality

“"The art of creating machines that
perform functions that require intelligence
when performed by people" (Kurzwell,
1990)

“"The study of how to make computers do
things at which, at the moment, people
are better" (Rich and Knight, 1991)

“"Afield of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes" (Schalkoff,
1990)

“"The branch of computer science that is
concerned with the automation of
intelligent behavior" (Luger and

Acting humanly: The Turing Test approach

« The Turing Test, proposed by Alan Turing (Turing, 1950), was
designed to prowde a satisfactory operational definition of
intelligence.

 The computer would need to possess the following

capabilities:

1. Natural language processing to enable it to communicate successfully in
English (or some other human language);

2. Knowledge representation to store information provided before or during the
interrogation;

3. Automated reasoning to use the stored information to answer questions and
to draw new conclusions;

4. Machine learning to adapt to new circumstances and to detect and
extrapolate patterns.

 To pass the total Turing Test, the computer will need

« Computer Vision
 Robotics

CS 362 SLIDE 15

Thinking humanly: The cognitive modeling approach

- Program thinks like a human ..!

We need to get inside the actual workings of human minds.
There are three ways:

— through introspection--trying to catch our own thoughts as they
go by

— or through psychological experiments.

— Brain Imaging

Cognitive science brings together

« Computer Models of Al and

« Experimental Techniques from Psychology

CS 362 SLIDE 16

Cognitive Science vs. Artificial Intelligence

Cognitive science Artificial intelligence
Intelligence Artificial intelligence
Knowledge Knowledge base
Cognition Information processing
Learning Machine learning

Learning/understanding language Natural language processing

CS 362 SLIDE 17

Thinking rationality: The Logical approach

 Ensure that all actions performed by computer are
justifiable (“rational”)

Facts and Rules |
In Formal Logic

A
A 4

Theorem Prover

« Rational = Conclusions are provable from inputs and
prior knowledge

* Problems:
— Representation of informal knowledge is difficulty

— Hard to define “provable” plausible reasoning

— Combinatorial explosion: Not enough time or space to prove
desired conclusions.

CS 362 SLIDE 18

Acting rationally: The rational agent approach

« Rational behavior : doing the right thing (that which is
expected to maximize goal achievement, given the available
information).

« Rational Agent is one that acts to achieve the best outcomes
or, when there is uncertainty, the best expected outcome.

Systems Acting Rationally

= Building systems that carry out actions
to achieve the best outcome

= Rational behavior

= May or may not involve rational thinking
= i.e., consider reflex actions

= T his is the definition we will adopt

Rational agents do the best they can
given their resources

CS 362 SLIDE 19

Rational Agents

very few resources lots of resources

no thought limited,
approximate
reasoning

Careful, deliberate

“reflexes” reasoning

» Adjust amount of reasoning according to
available resources and importance of
the result

* This is one thing that makes Al hard

AQvantages anc

» Advantages : » Disadvantages :

« More powerful and more
useful computers.

Increased costs

= New and improved interfaces.

Difficulty with software
development - slow and

= Solving new problems. expensive

= Better handling of
information.

Few experienced

programmers
. Relieves information
overload.

Few practical products have

= Conversion of information reached the market as yet.
into knowledge.

CS 362 SLIDE 21

Elizo

ELIZA — example conversation

@ Men are all alike
o In what ways?
@ They are always bugging us about something or other
@ Can you think of specific example?
o Well, my boyfriend made me come here
@ Your boyfriend made you come here?
He says | am depressed much of the time
| am sorry that you are depressed
Its true, | am unhappy

| need some help that much seems certain

o
°
o
@ Do you think coming here will help you not to be unhappy?
°
@ What would it mean to you if you got some help?

Q

Perhaps | could learn to get along with my mother
@ Tell me more about your family

CS 362 SLIDE 22

Deep Blue

Deep Blue vs. Garry Kasparov (2)

200,000,000 board configurations 3 board configurations per second

per second

Has small knowledge about chess, Has huge knowledge about chess,
but a huge computational but a considerably smaller
capacity computational capacity

A machine has no emotions nor Has feelings and brilliant intuition,
intuition, it does not forget, cannot but can experience fatigue and

be confused or feel uncomfortable boredom and loss of concentration

CS 362 SLIDE 23

Self-Driving Cars

Google self-driving cars

Autonomous Driving

Google's modified Toyola Prius uses an array of sensors 1o navigate public roads without @ human
drivar. Other components, not shown, inciude a8 GPS receiver and an inertial motion sensor.

LIDAR - ‘ ; POSITION ESTIMATOR
A rotating sensor on the roof

A sensor mounted on the left
scans more than 200 feet in all rear wheel measures small
direcions to generate a pracise movements made by the car
three-dimensional map of the and helps to accurately locate

C3r'S SUTouUNndings. its posstion on the map.

Four standard automotive radar sensors, three In front and one
in the rear, help determine the positions of distant cbjects.

bicyclists.
- - —
il \
’, . -~

Souce Google IO WO VUM, FHCTROGRAREES S MAMEY ATEMIAN 1OW TTHIE NOW VOSK TS

* Google’s self-driving car passes 300,000 miles (
8/15/2012)

CS 362 SLIDE 24

IBM-Watson

IBM Watson — DeepQA project

Agatha Christie
Sue Grafon

Syna

@ February 2011: supercomputer IBM Watson defeated the best
human competitors in a game of Jeopardy and won $35.734

@ Advanced methods of natural language processing, knowledge
representation, reasoning, and information retrieval

CS 362 SLIDE 25

Robotics

Robotics

e Mars rovers

e Autonomous vehicles
* DARPA Grand Challenge
* Google self-driving cars

e Autonomous helicopters

e Robot soccer
* RoboCup

e Personal robotics
* Humanoid robots
* Robotic pets
* Personal assistants?

CS 362 SLIDE 26

Robocop

RoboCup

CS 362 SLIDE 27

NLP

Natural Language
* Speech technologies
* Google voice search HEH T
* Apple Siri
Machine translation
* translate.google.com
* Comparison of several translation systems

1:57 PM 35 % W

¢¢ Siri why are you so great »

hat | am

it 2 by -) N,

DOUrCE Lheongmal Jext arman jrarsiaton oogie Jransiale

e Patit Prmee

French

*La Petit Prince’
("The Little Prines™)
By Antoine de Sant-
Exupéry

La premser soir je ma
suisdonc endormi sur
le sable 3 mille milles
da tonts terre habitéa,
J'étaiz bien plus isolé
qu'un naufragé sur un
radeau au milien de
I'ceéan. Alors vous
ITAGINeZ M2 SUrprisa,
an lever du jour, guand
une drite de petite
voix m'zréveills, Elle
disait: Sl vous plait...
dessine-mod un
mouton!

On the first night, I fell
asleap on thesand, a
thousand miles from
any human habitation,
I was far more isolated
than a shipwrecked
sailor on a raftin the
iddle of the ecean. So
FOU Can imagine my
surprise at sunrise
when an odd little
woice wolke me up. It
siid: "Please ., draw me
ashespt

- Wordsworth
Children's Classics,
1995

Tha first night T went to
slesp on thesand a
thougand miles from
any human habitation,
I was moreisolated
than a shipwrecked
sailor on araftin the
middie of the ccean. So
imagine my surprise at
daybreak, when a
funny little voioe woke
me. She said: ‘T it

£65 YOU ... draw me

CS 362 SLIDE 28

Vision

Vision
e handwriting recognition

* Face detection/recognition: many consumer
cameras, Apple iPhoto

¢ Visual search: Google Goggles
e VVehicle safety systems: Mobileye

- wm » hamen

:::::

> & , 42 e]
Our Vision. Your Safety;
i)
st VA
o) A = \) l E 8 a
. o & =
ol Al

Googie goggles 3

ke o

CS 362 SLIDE 29

Captcha

Reverse Turing test: CAPTCHA

e CAPTCHA — Completely Automated Public Turing Test to Tell
Computers and Humans Apart

@ A study (conducted using Amazon Mechanical Turk) shows that
CAPTCHA is “often more complex than it should be" — the average
solve time is 9.8 seconds (Bursztein et al., 2010)

CS 362 SLIDE 30

Wolfram Alpha

Wolfram Alpha — Computational Knowledge Engine

* WolframAlpha b

| How do you feel today? =1
| =B e e o = Examples =z Randos
Assuming "How do you feel today™ is a phease | Use & = qusstion sbowt Alpha instead

Input interpretation.

How are you?

Resuit:
I am doing well, thank you.

Computed by Wellrmn Mothemaotica (& Download page

CS 362 SLIDE 31

StarCraft

StarCraft Al Competition (2010)

@ An agent (an intelligent program that acts autonomously in an
environment) must be capable of solving several difficult problems
(planning, optimization, multiagent control) in a limited time and
with limited resources at its disposal

CS 362 SLIDE 32

Counting Calories

Deep learning: counting calories (Google)

http: / /www.popsci.com /google-using-ai-count-calories-food-photos

@ A deep learning system estimates the calories based on dish photo

|

CS 362 SLIDE 33

Al-Other Disciplines

* Philosophy Logic, methods of reasoning, mind as physical
system, foundations of learning, language,
rationality.

* Mathematics Formal representation and proof, algorithms,

computation, (un)decidability, (in)tractability

* Probability/Statistics modeling uncertainty, learning from data
* Economics utility, decision theory, rational economic agents
* Neuroscience neurons as information processing units.
* Psychology/ how do people behave, perceive, process cognitive
Cognitive Science information, represent knowledge.

* Computer building fast computers

engineering
* Linguistics knowledge representation, grammars

CS 362 SLIDE 34

History of Al

1943 McCulloch & Pitts: Boolean circuit model of brain

1950 Turing's “Computing Machinery and Intelligence”

1952-69 Look, Ma, no hands!

1950s Early Al programs, including Samuel's checkers program,
Newell & Simon's Logic Theorist, Gelernter's Geometry Engine

1956 Dartmouth meeting: “Artificial Intelligence” adopted

1965 Robinson’s complete algorithm for logical reasoning

1966—74 Al discovers computational complexity
Neural network research almost disappears

1969-79 Early development of knowledge-based systems

1980-88 Expert systems industry booms

1988-93 Expert systems industry busts: “Al Winter”

1985-95 Neural networks return to popularity

1988—- Resurgence of probability; general increase in technical depth
“Nouvelle Al": ALife, GAs, soft computing

1995—- Agents, agents, everywhere . ..

2003- Human-level Al back on the agenda

CS 362 SLIDE 35

Areas of Study in Al

« Reasoning, optimization, resource allocation

— planning, scheduling, real-time problem solving,
Intelligent assistants, internet agents

« Natural Language Processing

— Information retrieval, summarization, understanding,
generation, translation

 Vision
— Image analysis, recognition, scene understanding

 Robotics

— grasping/manipulation, locomotion, motion planning,
mapping

CS 362 SLIDE 36

Where are we nowe

« SKICAT: a system for automatically classifying the
terabytes of data from space telescopes and identifying
Interesting objects in the sky. 94% classification
accuracy, exceeds human abilities.

 Deep Blue: the first computer program to defeat
champion Garry Kasparov.

 Pegasus: a speech understanding program that is a
travel agent (1-877-LCS-TALK).

« Jupiter: a weather information system (1-888-573-
TALK)

« HipNav: a robot hip-replacement surgeon.

CS 362 SLIDE 37

Where are we nowe

 Navlab: a Ford escort that steered itself from
Washington DC to San Diego 98% of the way on its own!

« google news: autonomous Al system that assembles
“live” newspaper
« DS1: a NASA spacecraft that did an autonomous flyby

an asteroid.
« Credit card fraud detection and loan approval
e Search engines: , automatic

classification and indexing of research papers.

* Proverb: solves NYT puzzles as well as the best
humans.

CS 362 SLIDE 38

http://www.citeseer.com/

Surprises in Al research

« Tasks difficult for humans have turned out to be
“easy”
— Chess
— Checkers, Othello, Backgammon
— Logistics planning
— Airline scheduling
— Fraud detection
— Sorting mail
— Proving theorems
— Crossword puzzles

CS 362 SLIDE 39

Surprises in Al research

« Tasks easy for humans have turned out to be
hard.
— Speech recognition
— Face recognition
— Composing music/art
— Autonomous navigation
— Motor activities (walking)
— Language understanding

— Common sense reasoning (example: how many legs
does a fish have?)

CS 362 SLIDE 40

 Robotic vehicles

« Speech recognition

« Logistics planning
 Robotics

« Spam filtering
 Game playing

« Machine Translation
 Medicine

« Tele Communications
 Banking

CS 362 SLIDE 41

Agent

* An agent is anything that can be viewed as
perceiving its environment through sensors

and acting upon that environment through
effectors.

 Examples:
Human agent
Robotic agent
Software agent

Agent and Environment

sensors

percepts

/ actions

'\/

effectors

2/20/2021 MGIT-HARINATH

Key Definitions

* Agent Percept Sequence
* Agent Function

* Agent Program

Example: Vaccum Cleaner Agent

T

SR 0SR

* Percepts: location and contents, e.g., [A,Dirty]
* Actions: Left, Right, Suck, NoOp

* |f Current Square is Dirty, then Suck
Otherwise, move to Other Square

Percept Sequence & Action

Percept sequence Action
A, Clean Right
A, Dirty| Suck
B, Clean)| Left
B, Dirty] Suck
A, Clean], [A, Clean Right
A, Clean], [A, Dirty] Suck
A, Clean), [A, Clean, [A, Clean] Right

A, Clean], [A, Clean], (A, Dirty|

Suck

2/20/2021 MGIT-HARINATH

Sensors & Effectors

Percelves---sensors.

Percept Sequence.

The current percept, or a sequence o
percepts can influence the actions of an

agent.

2/20/2021 MGIT-HARINATH 7

Sensors & Effectors

» Change the environment- Effectors
» Action

» Action seguences

» Agent Program

2/20/2021 MGIT-HARINATH

Structure of agents

A simple agent program can be defined
mathematically as an agent function which
maps every possible precepts sequence to a
possible action the agent can perform.

F: p*->A

The term percept Is use to the agent's
perceptional inputs at any given instant.

Agents

Autonomous Agent: Decide autonomously which
action to take in the current situation to maximize
progress towards its goals.

Performance measure: An objective criterion for
success of an agent's behavior.

E.g., performance measure of a vacuum- cleaner
agent could be amount of dirt cleaned up,
amount of time taken, amount of electricity
consumed, amount of noise generated, etc.

2/20/2021 MGIT-HARINATH 10

Rational Agent

Al Is about building rational agents.

An agent Is something that perceives and
acts.

A rational agent always does the right
thing.

Rational agents

* An agent should strive to "do the right thing", based
on what it can perceive and the actions it can
perform. The right action is the one that will cause
the agent to be most successful.

e Rational Agent: For each possible percept sequence,
a rational agent should select an action that is
expected to maximize its performance measure,
given the evidence provided by the percept

sequence and whatever built-in knowledge the agent
has.

Rationality

Perfect Rationality:

Assumes that the rational agent knows all

and will take the action that maximize the
utility.

Human beings do not satisfy this definition of
rationality.

2/20/2021 MGIT-HARINATH 13

Intelligent Agents

Intelligent Agent:
must sense,
must act,

must be autonomous(to some extent)
must be rational.

2/20/2021 MGIT-HARINATH

14

PEAS

PEAS:

v Performance measure
v Environment

v’ Actuators

v'Sensors

PEAS

Specify Task Environment as fully as Possible

* Consider, e.g., the task of designing an automated
taxi driver:

— Performance measure: Safe, fast, legal, comfortable trip,
maximize profits

— Environment: Roads, other traffic, pedestrians, customers
— Actuators: Steering wheel, accelerator, brake, signal, horn

— Sensors: Cameras, sonar, speedometer, GPS, odometer,
engine sensors, keyboard

PEAS

Agent: Medical diagnosis system

Performance measure: Healthy patient,
minimize costs

Environment: Patient, hospital, staff

Actuators: Screen display (questions, tests,
diagnoses, treatments, referrals)

Sensors: Keyboard (entry of symptoms,
findings, patient's answers)

PEAS

Agent: Part-picking robot

* Performance measure: Percentage of parts in
correct bins

* Environment: Conveyor belt with parts, bins
* Actuators: Jointed arm and hand

* Sensors: Camera, joint angle sensors

PEAS

Agent: Interactive English tutor

e Performance measure: Maximize student's
score on test

e Environment: Set of students

e Actuators: Screen display (exercises,
suggestions, corrections)

* Sensors: Keyboard

Agent Environment

Environments In which agents operate can
be defined In different ways.

It Is helpful to view the following definitions
as referring to the way the environment
appears from the point of view of the agent
itself.

Properties of Task Environment

Fully Observable vs Partially Observable
Single Agent vs Multi Agent
Deterministic vs Stochastic

Episodic vs Sequential

Static vs Dynamic

Discrete vs Continous

Known vs Unknown

Environment: Observability

* Fully Observable:

— Access to Complete State of Environment at each
point of time.

— Sensors detect all aspects that are relevant to the
choice of action

— Eg: Chess
e Partially Observable:

— Noisy and Inaccurate Sensors
— Eg: Vaccum Agent (Local Dirt Sensor)

2/20/2021 MGIT-HARINATH 22

Environment: Agents

* Single Agent:

Eg: Crossword Puzzle

* Multi Agent:

Eg: Chess

Competitive Multi Agent
Partially Cooperative Multi Agent

2/20/2021 MGIT-HARINATH

23

Environment: Determinism

e Deterministic:

-Next State is Completely determined by
Current State and Action executed by the

Agent.
Eg: Crossword Puzzle, Chess

e Stochastic:
- Partially Observable

Eg: Taxi Driving

2/20/2021 MGIT-HARINATH

24

Environment: Episodicity

e Episodic:
- Agents Experience divided into Atomic Episodes
- Each Episode-Single Action

- Next Episode does not depend on actions taken in
previous episodes.

Eg: Part Picking Robot, Image Analysis

* Sequential:
- Current Decision could affect all Future Decisions.

Eg: Chess, Taxi Driving

Environment: Dynamism

* Dynamic:

— Changes over time independent of the actions of
the agent

— Eg: Taxi Driving, Interactive English Tutor
* Static:

— Does not change from one state to next
— EQg: Crossword Puzzle

* Semi Dynamic:
— Does not change but Performance Score does
— Eg: Chess

2/20/2021 MGIT-HARINATH 26

Environment: Continuity

 Discrete:

—Number of distinct percepts and actions is
limited.

—Eg: Crossword Puzzle, Chess
 Continuous:

—Number of distinct percepts and actions is
not limited.

— Eg: Taxi Driving

2/20/2021 MGIT-HARINATH

27

Environment: Known

* Known:
— Outcomes for all actions are given
— Partially Observable
— Eg: Solitaire Card Games

* UnKnown:
— Agent have to Learn to make Good Decisions
— Fully Observable
— Eg: New Video Game

2/20/2021 MGIT-HARINATH

28

Examples

Task Environment Observable Agents Deterministic Episodic ~ Static Discrete
Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential ~ Semi Discrete
Poker Partially ~Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic ~ Sequential ~ Static Discrete
Taxi driving Partially ~ Multi Stochastic ~ Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous
Image analysis Fully Single Deterministic Episodic ~ Semi Continuous
Part-picking robot Partially Single Stochastic ~ Episodic Dynamic Continuous
Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
Interactive English tutor | Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

2/20/2021

MGIT-HARINATH

29

Structure of Agents

* Agent Program
* Agent Function

Agent= Architecture + Program

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
tahle, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action «— LOOKUP{ percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and
returns an action each time. It retains the complete percept sequence in memory.

Classes of Intelligent Agents

Intelligent agents are grouped Iin to five
classes based on their degree of perceived
Intelligence and capability.

Simple reflex agents
Model based reflex agents
Goal based agents

Utility based agents
Learning agents

Simple reflexagents

Simple reflex agents act only on the basis of the
current percept, ignoring the rest of the percept
history.
The agent function is based on the condition-action
rule: if condition then action.

Eg: if car-infront-isbraking then initiate-braking
Succeeds when the environment is fully observable.
Randomized Simple Reflex Agent

Simple reflexagents

.

ngent Sensors —as

J

What the world
1s like now

Y

AT : > . What action |
() -actio S
Condition-action rules shonld 45 Gow

%

Actuators

JUAUWIUOJTIAUH

Figure 2.9

Schematic diagram of a simple reflex agent.

2/20/2021

MGIT-HARINATH

33

Simple reflexagents

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state < INTERPRET-INPUT(percept)
rule +— RULE-MATCH(state, rules)
action < rule. ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

2/20/2021 MGIT-HARINATH 34

Model Based Agent

» A model-based agent can handle a partially
observable environment.
» Maintain Internal State(Keep Track of Part of
World it cant see now).
» Update Internal State
* How World Evolves Independently
* How Agents Own Actions affect the World
» This knowledge about "how the world evolves" is
called a model of the world, hence the name
"model-based agent".

Model Based Agent

PR
f Vd ‘\‘ r]
’ ~ Sensors -

~

N
-
How the world evolves)| What the world
C i1s like now

(Whal my actions do

JUQWIUOIIAUS]

Y . - \ What action |
(Condition-action ruleD—P shonlddé tiow

kAgen[Actuators e

Figure 2.11 A model-based reflex agent.

2/20/2021 MGIT-HARINATH 36

Model Based Agent

function MODEL-BASED-REFLEX-AGENT(percept) returns an action

persistent: state, the agent’s current conception of the world state
model, a description of how the next state depends on current state and action

rules, a set of condition—action rules
action, the most recent action, initially none

state «— UPDATE-STATE(state, action, percept, model)
rule «—— RULE-MATCH(state, rules)

action < rule. ACTION

return action

Figure 2.12
using an internal model. It then chooses an action in the same way as the reflex agent.

A model-based reflex agent. It keeps track of the current state of the world,

2/20/2021 MGIT-HARINATH

37

Goal Based Agent

» Goal Information(Describes Situations that are
desirable).

» Combine Goal Information with Model.

» Goal Based Action Selection is Straight Forward

» Choose among multiple possibilities, selecting the
one which reaches a goal state.

» Search and Planning(Goal Based)

Goal Based Agent

¢ Tk -~
N Sensors =
\\\
State \

What the world
(How the world evolves 1s like now

H

What it will be like
if I do action A

C What my actions do

JURUWIUOITAUH

T What action |
@ e should do now

t‘\gent Actuators

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

2/20/2021 MGIT-HARINATH 39

Utility Based Agent

Goal Based agents only distinguish between goal
states and non-goal states.

Define a measure of how desirable a particular
state is.

This measure can be obtained through the use of a
utility function which maps a state to a measure of
the utility of the state.

Chooses Action that Maximizes Expected Utility of
Action Outcomes.

Utility Based Agent

,f) -
A~
Sso Sensors -
\\
State \

What the world
(How the world evolves is like now

What it will be like
if I do action A

in such a state

What action 1
should do now

Y

Qgent Actuators

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

(What my actions do

JUQUIUOJIAUG]

2/20/2021 MGIT-HARINATH 41

Learning Agent

It allows the agents to initially operate in unknown
environments and to become more competent
Four Components:

Critic

Learning Element

Performance Element

Problem Generator
Eg: Automated Taxi

Learning Agent

Pertormance standard

(

Q g ent Actuators

'

\

Ciitic e Sensors s
feedback
changes '
Learning ™= Performance
element |em element
knowledge
learning
goals
Problem
generator '

JUQUWIUOIIAUT

Figure 2.15

A general learning agent.

)

2/20/2021

MGIT-HARINATH

43

Applications of Intelligent Agents

* Intelligent Agents are applied as
Automated Online Assistants.

e Use in Smart Phones.

2/20/2021 MGIT-HARINATH

44

How the components of agent programs work

* There are three ways in which the agent of program work:

— Atomic
— Factored
— Structured
@ O
0 O |
a [O0—=0
B —=| C o] @ e
1 | .
0 1
B &
(a) Atomic (b) Factored (b) Structured

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no intemal structure; (b) Factored
representation: a state consists of a vector of attribute values:; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c¢) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.

This chapter has been something of a whirlwind tour of Al, which we have conceived of as
the science of agent design. The major points to recall are as follows:

An agent is something that perceives and acts in an environment. The agent function
for an agent specifies the action taken by the agent in response to any percept sequence.

The performance measure evaluates the behavior of the agent in an environment. A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequence it has seen so far.

A task environment specification includes the performance measure, the external en-

vironment, the actuators, and the sensors. In designing an agent, the first step must
always be to specify the task environment as fully as possible.

Task environments vary along several significant dimensions. They can be fully or
partially observable, single-agent or multiagent, deterministic or stochastic. episodic or
sequential, static or dynamic, discrete or continuous, and known or unknown.

The agent program implements the agent function. There exists a vaniety of basic
agent-program designs reflecting the kind of information made explicit and used in the
decision process. The designs vary in efficiency, compacmess, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

Simple reflex agents respond directly to percepts, whereas model-based reflex agents
maintain internal state to track aspects of the world that are not evident in the current
percepl. Goal-based agents act to achieve their goals, and uvtility-based agents iry to
maximize their own expected “happiness.”

All agents can improve their performance through learning.

Thank You

2222222222222222222222

INFORMED
SEARCH

Informed search

m We have seen that uninformed search methods that systematically
explore the state space and find the goals.

m /nefficientin most cases.

m Informed Search methods use problemspecific knowledge, are
more efficient.

m Informed Search methodtries to improve problem solving efficiency by
using problem specificknowledge.

2/20/2021 MGIT-IT-HARINATH

Continued

m A search strategy which searches the most promising branches of the
state-space first can:

— find a solution more quickly,
— find solutions even when there is limited time available,

— often find a better solution, since more profitable parts of the
state- space can be examined, while ignoring the unprofitable
parts.

m A search strategy which is better than another at identifying the most
promising branches of a search-space is said to be more informed.

2/20/2021 MGIT-IT-HARINATH

Continued

m The general approach we consider is called best-first search. Best- first
search is an instance of the general TREE-SEARCH or GRAPH- SEARCH

algorithm in which a node is selected for expansion based on an
evaluation function, f(n).

m The evaluation function is construed as a cost estimate, so the node
with the lowest evaluation is expanded first.

m The implementation of best-first graph search is identical to that for

uniform-cost search (previous topic), except for the use of f instead of g
to order the priority queue.

2/20/2021 MGIT-IT-HARINATH 5

Heuristics

s Heuristicis a rule Of thumb.

m “Heuristics are Criteria, methods or
principles for deciding whic

among several alternative courses of
action promises to be the most effective

in order to achieve some goals”,
Judea Pearl.

Can use heuristics to identify the most promising search path.
/20/2021 MGIT-IT-HARINATH 6

Continued

m A heuristic function at a node n is an estimate of the optimum cost

from the current node to a goal. Denoted by h(n).

h(n)=estimated cost of the cheapest path from node n to a goal node.

m Example
— Want to find the path from Vijayawada to Hyderabad
— Heuristic for Hyderabad may be straight line distance

between Vijayawada and Hyderabad.
— h(Vijayawada)=Euclidian distance(Vijayawada, Hyderabad)

2/20/2021 MGIT-IT-HARINATH

Heuristics nitial State ~~ Goal State
Example

m 8-Puzzle: Number of tiles out of place

m h(n)=5(1,2,3,4,8 are not in correct location)

Uninformed Search Vs. Informed Search
OR Heuristically Informed Search

Uninformed Search Vs. Informed Search
OR Heuristically Informed Search

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Heuristic
Evaluation

2/20/2021 MGIT-IT-HARINATH 12

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Heuristic
Evaluation

&

2/20/2021 MGIT-IT-HARINATH 13

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Heuristic
Evaluation

$
Heuristic Value

2/20/2021 MGIT-IT-HARINATH 14

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Heuristic
Evaluation

Heuristic Value
-
Small Heuristic
) Value

2/20/2021 MGIT-IT-HARINATH 15

Uninformed Search Vs. Informed Search OR
Heuristically Informed Search

Heuristic
Evaluation

’

Heuristic Value
-
Small Heuristic
) Value

h(C)
2/20/2021 MGIT-IT-HARTNATF 16

Uninformed Search Vs. Informed Search OR

Heuristically Informed Search
Heuristic

Evaluation

Heuristic Value

Small Heuristic
Value

2/20/2021 I\/IGIT—IT-

17

Uninformed Search Vs. Informed Search

OR Heuristically Informed Search
Heuristic

Evaluation

Heuristic Value

Small Heuristic
Value

2/20/2021 MGIT-IT-HARTNATF 18

Uninformed Search Vs. Informed Search
OR Heuristically Informed Search

Heuristic
Evaluation

’

Heuristic Value
i
Small Heuristic
) Value

- C

2/20/2021 MGIT-IT-HARINATH —

[h(B)

19

Uninformed Search Vs. Informed Search
OR Heuristically Informed Search

Heuristic
Evaluation

Uninformed Search [|

NO INFORMATION L
Direct Search BEST
Value

N R h(B)

2/20/2021 MGIT-IT-HARINATH

20

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function is not time consuming in
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

21

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function is not time consuming In
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

22

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

IN

23

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

frsifioain

of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

IN

24

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

IN

25

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

IN

26

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

2/20/2021 MGIT-IT-HARINATH

IN

27

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

saristii 7
of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

>

ey Bl PRl

2/20/2021 MGIT-IT-HARINATH

IN

28

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

P
of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

frsitioin____

>
>

MGIT-IT-HARINATH

IN

29

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function Is not time consuming

ey il PRl

7

4

of Nodes

the heuristic value calculation.

frsitioin____

IN

30

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

ey il PRl

7

4

of Nodes

hy
Hﬁ

frsitioin____

IN

31

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

ey il PRl

7

4

of Nodes

hy
Hﬁ

frsitioin____

IN

32

Heuristic Evaluation Function

 Good heuristic evaluationfunction i1s what directs searchto
reach goal with the smallest number of nodes.

HaritiFiotin
of Nodes

» Good heuristic evaluation function Is not time consuming
the heuristic value calculation.

Iﬁ

4

frsitioin____

MGIT—IT-m

IN

33

Best First Search

The generic best-first search algorithm selects a
node for expansion according to an evaluation
function.

It is a generalization of breadth first search.
Priority queue of nodes to be explored.

Cost function f(N) to applied to each node.
Always choose the node from the frontier that
has lowest f(IN) value.

e
5

ol
8 N
\4) \9)

Greedy Search

m Expand node with the smallest estimated cost to reach the goal.

m Use heuristic function f(n)=h(n)
— This algorithm is not optimal
— Not complete

Continued....

Greedy best-first search tries to expand the node that is closest to the
goal, on the grounds that this is likely to lead to a solution quickly

Thus, the evaluation function is f(n) = h(n)

Eig..ir) minimizing road distances a heuristic lower bound for distances
of cities is their straight-line distance

Greedy search ignores the cost of the path that has already been
traversed to reach n

Therefore, the solution given is not necessarily optimal

If r_elpeating states are not detected, greedy best-first search may
oscillate forever between two promising states.

2/20/2021

Continued..

Because greedy best-first search can start down an infinite path
and never return to try other possibilities, it is incomplete

Because of its greediness the search makes choices that can lead to
a dead end; then one backs up in the search tree to the deepest
unexpanded node

Greedy best-first search resembles depth-first search in the way it
prefers to follow a single path all the way to the goal, but will'back
up when it hits a dead end

The worst-case time and space complexity i1s O(bm)

The quality of the heuristic function determines the practical
usability of greedy search.

MGIT-IT-HARINATH 37

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| T Ol M| O|lO| @

0

fr) = h{m) = straight-line distance heuristic

38

38

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| T Ol MmOl O| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

39

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| T Ol MmOl O| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

40

2/20/2021

Continue..

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

H| T O M| M| OlO| W

0

MGIT-IT-HARINATH

f(n) = h (n) = straight-line distance heuristic

41

2/20/2021

Continue..

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

H | IT| Ol MmO 6| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

42

Continue...

2/20/2021

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T || m|O|O| ™

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

43

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| T Ol MM M| O|lO| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

44

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

—H | T MmO O|®

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

45

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

— | T || m|{O|lO| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

46

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| EZ| |l MmOl O| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

47

Continue...

2/20/2021

State

Heuristic: h(n)

366

374

329

244

253

178

193

98

=T Ol MmOl O| @

0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

48

2/20/2021

Greedy Search: Tree
Search

@ Start

MGIT-IT-HARINATH

49

2/20/2021

Greedy Search: Tree Search
@ Start

[329] [374]
[253]

MGIT-IT-HARINATH

50

2/20/2021

Greedy Search: Tree Search
m Start

[329] % [374]
[253]\ E

[193] [178]

MGIT-IT-HARINATH

51

2/20/2021

Greedy Search: Tree Search
m Start

[329] Aj [374]
[253]\ E

[193] F) [178]
[253] g E [0]

Goal

MGIT-IT-HARINATH

52

Greedy Search: Tree Search
(a)

[329] Aj [374]
[253]\ E

[193] e - 0 -

[253]
Path cost(A-E-F-I) = 253 + 178 + 0 = 431

dist(A-E-F-1)=140+99+211= 450
2/20/2021 MGIT-IT-HARINATH

[178]

Goal

[0]

53

2/20/2021

Greedy Search: Complete ?

Start
75

State Heuristic: h(n)

A 366
B 374

¥ C 250
D 244
E 253
F 178
G 193
H 98
I 0

f(n) = h (n) = straight-line distance heuristic

MGIT-IT-HARINATH

54

2/20/2021

Greedy Search: Tree Search

@ Start

MGIT-IT-HARINATH

55

2/20/2021

Greedy Search: Tree Search
@ Start

[250] [374]
[253]

MGIT-IT-HARINATH

56

2/20/2021

Greedy Search: Tree Search

Start

(a)
[250] W 3741(B)

[253]
[244]

MGIT-IT-HARINATH

57

2/20/2021

Greedy Search: Tree Search

Start

(a)
[250] W 3741(B)

[253]
[244] (D
Infinite Branch!
[250]

MGIT-IT-HARINATH

58

2/20/2021

Greedy Search: Tree Search

Start

(a)
[250] W 3741(B)

[253]
[244] (D

—

Infinite Branch!
[250] (¢
[244] é

g
o

MGIT-IT-HARINATH

59

2/20/2021

Greedy Search: Tree Search

Start

(a)
[250] W 3741(B)

[253]
[244] (D

—

Infinite Branch!
[250] (¢
[244] é

v
o

MGIT-IT-HARINATH

60

Children

Greedy Best-First
Search Goal - Node]

2/20/2021 MGIT-IT-HARINATH 61

Children

Greedy Best-First
Search Goal - Node]

2/20/2021 MGIT-IT-HARINATH 62

hild
Greedy Best-First
Search Goal - Node - I
10

2/20/2021 MGIT-IT-HARINATH 63

Children

Greedy Best-First

Search Goal - Node

S 7 Jabw

2/20/2021 MGIT-IT-HARINATH 64

Current Children

Greedy Best-First
Search Goal - Node

K 10
/7

S 7 Jabw

210

2/20/2021 MGIT-IT-HARINATH 65

Current Children

Greedy Best-First
Search Goal - Node

K 10
/7

/7 Jalw
/30w

210

2/20/2021 MGIT-IT-HARINATH 66

Current Children

Greedy Best-First

Search Goal - Node :
K /7 Jabw

Jalw

2/20/2021 MGIT-IT-HARINATH 67

Current Children

Greedy Best-First
Search Goal - Node

K 10
/7

/7

/7 Jalw
/30w

210

2/20/2021 MGIT-IT-HARINATH 68

Current Children

Greedy Best-First
Search Goal - Node

K 10
/7

/7

/7 Jabw
/30w
93€5 Jablw

210

2/20/2021 MGIT-IT-HARINATH 69

Current Children

Greedy Best-First
Search Goal - Node
K 0
Vs
Vs

Y.

/7 Jabw
/30w
93€5 Jablw

210

2/20/2021 MGIT-IT-HARINATH 70

Greedy Best-First
Search Goal - Node

2/20/2021

Current

0

/7
/7
Y.

210

MGIT-IT-HARINATH

Children

S 7 Jabw

/30w
93€5 Jablw
es Jalw

Greedy Best-First
Search Goal - Node

2/20/2021

Current

10

/7
/
g

210

MGIT-IT-HARINATH

Children

S 7 Jabw

/30w
93€5 Jablw
es Jalw

Greedy Best-First
Search Goal - Node

2/20/2021

Current

0

/7
/7
Y.

210

MGIT-IT-HARINATH

Children

S 7 Jabw

/30w
93€5 Jablw
es Jalw

Greedy Best-First
Search Goal - Node

2/20/2021

Current

10

/7
/
g

210

MGIT-IT-HARINATH

Children

/7 Jabw
/30w
93€5 Jablw

es Jalw

Greedy Best-First
Search Goal - Node

2/20/2021

Current

10

/7
/
g

>

210

MGIT-IT-HARINATH

Children

S 7 Jabw

Jalw
93€5 Jalw
és /sl
Jalw

75

Greedy Best-First
Search Goal - Node

2/20/2021

Current

10

/7
/
g

S5

210

MGIT-IT-HARINATH

Children

S 7 Jabw

Jalw
93€5 Jalw
és /sl
Jalw

76

Current Children

Greedy Best-First

Search Goal - Node :
/7 Jabw

Jalw
93€5 Jalw
és /sl
Jalw

N
S

/;

N

)

2 [8 | [v)8 fS I

2/20/2021 MGIT-IT-HARINATH 77

Children

Current

Greedy Best-First
Search Goal - Node

)

/7 /80w
Jalw
93€5 Jalw
és /sl
Jalw
I/l

N
S

/;

N

Hﬂﬂlﬁﬁﬁl

)

)

2/20/2021 MGIT-IT-HARINATH 78

Children

Current

Greedy Best-First
Search Goal - Node

S

/7 /80w
Jalw
93€5 Jalw
és /sl
Jalw
I/l

N
S

/;

N

Hﬂﬁllﬁﬂﬂl

)

2/20/2021 MGIT-IT-HARINATH 79

Children

Current

Greedy Best-First
Search Goal - Node

S

/7 /80w
/80w
93€5 Jalw
és Jalw
Jalw
ls/a0w
Jalw

N
S

/;

N

Hﬂﬁllﬁﬂﬂl

)

2/20/2021 MGIT-IT-HARINATH 80

Children

Current

Greedy Best-First
Search Goal - Node

S

/7 /80w
/80w
93€5 Jalw
és Jalw
Jalw
ls/a0w
Jalw

N
S

/;

N

ﬁﬂﬁllﬁﬂﬂl

)

2/20/2021 MGIT-IT-HARINATH 81

Children

Current

Greedy Best-First
Search Goal - Node

S

ﬂﬂﬂﬁlllﬂﬂl

/7 /80w
/80w
93€5 Jalw
és Jalw
Jalw
ls/a0w
Jalw

N
S

4

/;

™

N

)

2/20/2021 MGIT-IT-HARINATH 82

Greedy Best-First
Search Goal - Node
¥

935 Jalw
b
G

2/20/2021 MGIT-IT-HARINATH

(00]
w

Greedy Best-First
Search Goal - Node -
Y

G

G

2/20/2021 I\/IGIT—IT-HARINAT 84

Greedy Best-First
Search Goal - Node -
K

A

A

Greedy Best-First
Search Goal - Node -
K

A

A

Greedy Best-First
Search Goal - Node

Similar to Uniform

Cost Just use
Heuristic

¢ l<1

/ > P 4
ol
{\- w)

~ 1

[6]
]

0

2/20/2021 MGIT-IT-HARINAT

Current

S

n

s>~ [2 (2[5 S []S 1

4

/;

N

Children

/7 /80w
Jalw
93€5 Jalw
és Jalw
Jalw
I/l
Jalw
Ko/s010
Jalw

Greedy Best-First

Search Goal - Node

Similar to Uniform Cost: Node to Node
Cost Just use Heuristic: Node to

Goal

Greedy Best-First
Search Goal - Node

Similar to Uniform

Cost Just use
Heuristic

/ o "l -
/

Cost: Node to

Node Heuristic:
Node to Goal

Greedy Best-First

Search Goal - Node

Similar to Uniform

Cost: Node to

Cost Just use

T Node Heuristic:

Greedy Best-First

Search Goal - Node

Similar to Uniform
Cost Just use

Cost: Node to
Node Heuristic:

Greedy Best-First

Search Goal - Node

Similar to Uniform
Cost Just use

Cost: Node to
Node Heuristic:

Greedy Best-First

Search Goal - Node

Similar to Uniform
Cost Just use

Cost: Node to
Node Heuristic:

Greedy Best-First

Search Goal - Node

Similar to Uniform
Cost Just use

Cost: Node to
Node Heuristic:

Greedy Best-First

Search Goal - Node

Similar to Uniform

Cost: Node to

Cost Just use
Heuristic

(]

Node Heuristic:

| . | o 2
4 &) 7 >S5 AAC
Va

) \

Greedy Best-First

Search Goal - Node

Similar to Uniform
Cost Just use

Cost: Node to

Node Heuristic:

Greedy Best-First
Search Goal - Node

Similar to Uniform

Cost Just use

Cost: Node to Node

Heuristic: Node to

Continue...

m Greedy search is not optimal

m Greedy search Is incomplete without systematic
checking of repeated states.

m In the worst case, the Time and Space
Complexity of Greedy Search are both O(bm),
Where b iIs the branching factor and m the

maximum path length.

2/20/2021 GIT-IT-HARINATH

98

A* Search

m Greedy Search minimizes a heuristic h(n) which is an estimated cost
from a node n to the goal state. Greedy Search is efficient but it is not
optimal nor complete.

m Uniform Cost Search minimizes the cost g(n) from the initial state to n.
UCS is optimal and complete but not efficient.

m New Strategy: Combine Greedy Search and UCSto get an efficient
algorithm which is complete and optimal.

2/20/2021 MGIT-IT-HARINATH 99

Continue...

m A* uses a heuristic function which f(n) = g(n) + h(n)
m g(n) Is the exact cost to reach node n from the initial state.
m h(n) Is an estimation of the remaining cost to reach the goal.

2/20/2021 MGIT-IT-HARINATH 100

f(n) = g(n)+h(n)

2/20/2021 MGIT-IT-HARINATH 101

2/20/2021

A* Search

Start State

Heuristic: h(n)

366

374

329

244

253

178

193

98

| T Ol MmOl O| @

0

Goal f(n)=g(n)+ h (n)
g(n): is the exact cost to reacl/frode! 77'fiomhe initial state.

102

A* Search: Tree Search

@ Start

2/20/2021 MGIT-IT-HARINATH 103

A* Search: Tree Search

2/20/2021 MGIT-IT-HARINATH 104

A* Search: Tree Search

2/20/2021 MGIT-IT-HARINATH 105

A* Search: Tree Search

2/20/2021 MGIT-IT-HARINATH 106

A* Search: Tree Search

Goal I

2/20/2021 [418] MGIT-IT-HARINATH 107

A* Search: Tree Search

2/20/2021 [418] MGIT-IT-HARINATH 108

A* Search: Tree Search

2/20/2021 MGIT-IT-HARINATH 109

A* Search: Tree Search

2/20/2021 MGIT-IT-HARINATH 110

A* Search - Combines Heuristic &

Cost Goal - Bucharest

MWeamt
— a7
=] lasi
a2
o Fagaras
_ ™ Vaslul
Rimnieu Vikcea
142
1 211
= Lugo] g3 P ltest]
T — 98
as Hirsowa
M Mehadia 148 10 Orzicen|
TH . 86
198 138 BEucharest
Dobreta [a0
~ craiova Efarie
4 ciugiu

2/20/2021 MGIT-IT-HARINATH

Straight—line distance

© Bucharst
Arad
Buchsrest
Crawova
Dobrets
Efore
Fagaras
Giurgiu
Hirsovs
In=a

Lugoj
Mhehadia
Meamt
Orades
Pitesh

Rimnicu Vikes

Sibiu
Timisoara
Urzcem
Vashn

Zerind

prars

0
L&0
243
161
176
151
275
244
241
234

1Ca
193
253
L)

19
e
111

A* Search -
Continue Goal -

Aad
——
CShin
w 447=118+329
A46=280+368 ,f A71=231+380 “

591_:1:3.5+25:3 45:1:45341 EEE-BEEHEQ 55:3_:1|:|:I+25:3

n-

418=41840 615=455+160 B07=414+193
2/20/2021 MGIT-IT-HARINATH

449=754374

112

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

40—
Sibiu | 253
140097 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 146~ 977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\W'&‘i‘ﬁm
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

114

Arad | 366 Arad

—140= 11§A 75 Children
Sibiu | 253 Timisoara 329T:rind 374

10997 151 g0 11 71

— K& A _ Y Y
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380

| |

09— 211 146~ 977 80 70 151

— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti |100]| Sibiu |253 Mehadia | 241 Sibiu | 253

L
= Y F
Bucharesf] 0 Craiova | 160 Ramnicu 193
Valcea

Arad | 366
140 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 ngéjli'-ITBSHARINATH

Arad
Children

116

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%'ﬂk?éj‘f-rrBSHARlNATH

Arad

Children

Sibiu

Timisoara

117

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Arad
Children

Sibiu

Timisoara
Zerind

118

140
Sibiu | 253
140= 097 151 =80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09" 211 1= 97”7 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/153\97
= \R;
2/20/2021 BucharestIO Craiova | 160 W'&‘i‘f-rresr
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

Calculate

Jetal Cost

Arad
Children

Sibiu

Timisoara
Zerind

119

Arad
Children

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu

140
Sibiu | 253
140= 097 151 =80
K« A .
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09— 21" 1= 97”7 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/138\97
= \R;
2/20/2021 BucharestIO Craiova | 160 W'&‘i‘f-rresr
alcea

Calculate
mwJotal Cost

253
ASC.

120

L”Q Arad
140 11§A 75? Children
Sibiu 253 Timisoara| 329 Zerind | 374 S -
Ibiu
140%8 i 7
- '\ y y

0 S
— e Timisoara
Arad |366| | Fagaras |176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

— — 73) 151 Zerind

Sibiu | 253 BucharestIO Craiova | 160 Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

A
10177138 g7
= v~y Calculate @ Order _Select
2/20/2021 Buchares| 0 | | Craiova | 160 Rj\a'ﬂl'&‘i‘f-rr%HA l[otal Costl Asc. BMin. Cost

ced

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Arad
Children

Sibiu

Timisoara
Zerind

122

Heuristic
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Arad
Children

Sibiu

Timisoara
Zerind

123

Heuristic Cost
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 111 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Arad
Children

Sibiu

Timisoara
Zerind

124

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
99— 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Arad
Children

Sibiu

Timisoara
Zerind

125

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Arad
Children

Sibiu

Timisoara
Zerind

126

Sibiu 253
140 99 191 80
— & A

Heuristic

Cost

—140="

[=] Total

Arad |366] | Fagaras | 176] | Orades | 380 Rf,'m"'c” 193
alcea
99 211 146 97 80
(/ & — K b
Sibiu 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu 253
101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 RW. B3k
alcea |

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Arad
Children

Sibiu

Timisoara
Zerind

127

Heuristic

Cost

—140="

Sibiu 253
140 99 191 80
— & A

[=] Total
393

Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 1= 97”7 80
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R‘}'ﬂ%‘i‘f-m
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Arad
Children

Sibiu
Timisoara
Zerind

128

Heuristic

Cost

—140="

Sibiu 253
140 99 191 80
— & A

[=] Total
393

Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 1= 97”7 80
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R‘}'ﬂ%‘i‘f-m
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Arad
Children

Sibiu
Timisoara
Zerind

129

Heuristic [+] Cost [=] Total

2 EE

0
M Arad
—140= 8 75 Children

11
¥ T‘
Sibiu 253 Timisoara| 329 Zerind | 374 _ - -
140 99 191 80 1%1 7|1 SI b - 393
- & A e ' ' Timisoara

Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea ;
| |
97 80 7'0 151 Zerl n d
y

/99 A /146 e \

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
e Y
2/20/2021 Buchares| 0 || Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 130

Timisoara

Heuristic Cost [=] Total

Arad | 366 Arad

140~ g 75? Children
Sibiu 253 Timisoara| 329 Zerind | 374 o
. | Sibiu

/140 ‘/99 151* 80 111 T . :
>— : . Timisoara
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
J ' Zerind
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
=~ Y
2/20/2021 BucharestIO Craiova | 160 R‘%ﬂlgéjli'-lTBSHARINATH 131

Timisoara

Heuristic [+] Cost [=] Total

Arad | 366

—140=" 118

Arad
Children

75
4 T‘
Timisoara| 329 Zerind | 374 o P
8™ sibiu

I
111 A
Y y

Sibiu 253
140 99 191 80
— & A

>— Timisoara
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
J ' Zerind
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 132

Timisoara

Heuristic [+] Cost [=] Total

Arad | 366
118 Th
4

Arad
Children

—140="

Sibiu | 253 Timisoara 329?rind 374
ibiu
140 99 191 80 1‘11 7I1
— & A e ' Y Timisoara
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
] | ’
97 80 7'0 151 Zerlnd
A

/99 A /146 e \

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
e Y
2/20/2021 Buchares| 0 || Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 133

Timisoara

Heuristic Cost [=] Total
B L
Arad | 366 Arad
1121 75 Children

Sibiu 253 Timisoara| 329 Zerind | 374 _ - -

140 99 151 80 1%1 7|1 SI b - 393

— L A E:iw : ' Timisoara
Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

—140="

+

Valcea ; d

' ! Zerin
99 211 146 97 80 10 151
— K — K 'Y Y v

Sibiu | 253 BucharestIO Craiova | 160 || Pitesti {100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%ﬂlgéjli'-ITBSHARINATH 134

Timisoara

Heuristic

Cost

Arad | 366
1 40= 118 75

1

[=] Total

Sibiu | 253 Timisoara 329?rind 374

| |

140= 097 151 =80 "1 71

/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380

| |

909" 211 1= 97”7 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Arad
Children

Sibiu 393

Timisoara 447
Zerind

135

Heuristic [+] Cost [=] Total

Arad | 366 Arad
40— g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374
ibiu
| | -
/140 ‘/99 151* 80 11 71 S—
Ramnicu * * TI m |Soara
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
' | Zerind
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 136

Heuristic [+] Cost [=] Total

Arad [366 Arad
—140= g s Children
Sibiu | 253 Timisloara 329?:"“ 314 S|b|u
140997 151, 80 111 71 e
— &£ A = . : Timisoara

Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea

' | Zerind
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || Craiova | 160 R\%Iﬂlgéjli'-rTBSHARINATH 137

Heuristic [+] Cost [=] Total

7

Arad | 366
1 40= 118 75
4

Sibiu | 253 Timisloara 329?rlind 374 Sibiu
1407997 151 80 111 71 S—
/ ‘/ * Ramnicu)) TI misoara

Arad
Children

Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
J ' Zerind
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH 138

Heuristic

Cost

Arad | 366
1 40= 118 75

1

[=] Total

Sibiu | 253 Timisoara 329?rind 374

| |

140= 097 151 =80 "1 71

/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380

| |

909" 211 1= 97”7 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Arad
Children

Sibiu 393

Timisoara 447
Zerind

139

Heuristic [+] Cost [=] Total

M Arad
—140= 11§A 75 Children

Sibiu | 253 Timisoara 329?rind 374
| Sibiu 393

|
/140 ‘/99 151* 80 11 71)
. ' x Timisoara 447
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| | I
99 211 146 97 80 70 151 Zerlnd 449
—_— K — K 'y Y v ————
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y

. ‘R ' I‘I
BucharestIO Craiova | 160 ‘Kﬂlgéjli'-ﬁ% ARINATH 140

2/20/2021

Current Queue

2/20/2021 MGIT-IT-HARINATH 141

Current Queue

Timisoar

447

2/20/2021 MGIT-IT-HARINATH 142

Current Queue

Zerin

Timisoar
447

449

2/20/2021 MGIT-IT-HARINATH 143

Current Queue

Timisoar § Zerin
447 449

2/20/2021 MGIT-IT-HARINATH 144

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

40—
Sibiu | 253
140097 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 146~ 977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\W'&‘i‘ﬁm
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

146

Arad | 366
140 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 ngéjli'-ITBSHARINATH

Sibiu
Children

147

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%'ﬂk?éj‘f-rrBSHARlNATH

Sibiu

Children

Arad

Fagaras

148

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Sibiu
Children

Arad

Fagaras

Orades

149

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

150

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

140
Sibiu | 253
140= 097 151 =80
— K& A _
Arad |366] | Fagaras | 176] | Orades | 380 RG'""'C” 193
alcea
09" 211 1= 97”7 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/153\97
= \R;
2/20/2021 Buchares:lo Craiova | 160 W'&‘i‘f-rresr
alcea

Calculate
™ otal Cost

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

151

Sibiu
Children

Arad

Fagaras

Orades

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

Ramnicu

140
Sibiu | 253
140= 097 151 =80
K« A .
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09— 21" 1= 97”7 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/153\97
= \R;
2/20/2021 Buchares:lo Craiova | 160 W'&‘i‘f-rresr
alcea

Calculate
™ otal Cost

raer

ASC.

152

M Sibiu
140 11§A 75? Children
Sibiu 253 Timisoara| 329 Zerind | 374 A 1 ad
%8 i 7
- '\ y y
176

/140 0 F
Ramnicu . a'g aras
Arad |366| | Fagaras Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

/99 A /146 R 73) 151 Orades

BucharestIO Craiova | 160 || Pitesti [100|| Sibiu]253 Mehadia | 241 Sibiu | 253 RamniCU

A

1017 138 o7 Jro

o I NN Calculate .SelCt
2/20/2021 Buchares{ 0 | | Craiova | 160 Rj\a'ﬂl'&‘i‘f-rmsHA [otal Costll ASc. BMin. Cast

ced

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

154

Heuristic
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140= 097 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

155

Heuristic Cost
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140= 097 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

156

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
99— 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Sibiu
Children
Arad

Fagaras

Orades
Ramnicu

157

Sibiu 253
140 99 191 80
— & A

Heuristic

Cost

Arad | 366
1 40= 118 75
4

329?rind

[=] Total

Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 1= 97”7 80
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R‘}'ﬂ%‘i‘f-m
alcea

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Sibiu

Children
Arad
Fagaras

Orades
Ramnicu

58

Heuristic

Cost

[=] Total

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Sibiu

Children
Arad
Fagaras

Orades
Ramnicu

59

/99 ‘/211

Heuristic

Cost

—140="

Sibiu | 253
140 99 191 80
— K A
Arad |366| | Fagaras | 176] | Orades | 380

Ramnicu
Valcea

193

/146 N

Arad | 366
118 75
4

+

[=] Total
646

Timisoara| 329 Zerind | 374
| |
M 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
e Y Fs_
. Ramni
2/20/2021 Bucharestl 0 || craiova | 160 ‘%'ﬂlgéj‘f

-IT93;|1ARINATH

Sibiu
Children
Arad
Fagaras
Orades

Ramnicu

60

Heuristic [+] Cost [=] Total

8 EE
#Lﬂihfl Sibiu
—140= 11§A 75 Children

+

Sibiu | 253 Timisoara| 329 Zerind | 374 A
rad 646
140 99 151 80 1%1 7|1
‘/ A Ramnicu i . Fag aras
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146= 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'35\97
=~ Y Ta__
. Ramni
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-WBS;I(ARINATH 161

Heuristic [+] Cost [=] Total

M Sibiu
140 g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374
s . . Arad 646
w15 1 7
A v v

/140 ‘/ 80
Ramnicu Fag aras
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

| |
99— 146=97" 80 70 151 Orades
— K — K by Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1':53\97
e Y
2/20/2021 Buchares| 0 || craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH 162

Heuristic [+] Cost [=] Total

M Sibiu
—140= 1121 75 Children
Timisoara 329?rind 374 A r ad 6 46

Sibiu | 253
|
140 99 191 80 M 11
— K A = ' ' Fagaras
Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea

| |
99— 146=97" 80 70 151 Orades

— K — K by Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253 Ramn|Cu

101/1':53\97
e Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 163

Heuristic [+] Cost [=] Total

#Lﬂihfl Sibiu
—140= 118 75 Children

4 T‘
Sibiu | 253 Timisoara| 329 Zerind | 374 A
rad 646
140 99 151 80 1%1 7|1
‘/ A Ramnicu i . Fag aras
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1':53\97
=~ Y
2/20/2021 BucharestIO Craiova [160 R‘%ﬂlgéjli'-ITBSHARINATH 164

Heuristic [+] Cost [=] Total

B E
#Lﬂihfl Sibiu
—140= 11§A 75 Children

+

Sibiu | 253 Timisoara| 329 Zerind | 374 A
rad 646
140 99 151 80 1%1 7|1
‘/ A Ramnicu i . Fag aras
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146= 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'35\97
=~ Y Ta__
. Ramni
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-WBS;I(ARINATH 165

Heuristic [+] Cost [=] Total

B E
M Sibiu
—140= 11§A 75 Children

Sibiu 253 Timisoara| 329 Zerind | 374 Al‘ad 6 46

+

I | |
140 99 151 80 M A
T g —adis Wi, N ' ' Fagaras 415
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'35\97
&~ Y Fs_
. Rampi
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-WBS;I(ARINATH 166

Heuristic [+] Cost [=] Total

Sibiu
140 1121 75 Childre
Sibiu 253 Timisoara 329?rind 374 A
ad
140%‘151\80 i 7
— A E:iw ' ' Fagaras
380

Arad | 366

Arad |366| | Fagaras |176| | Orades Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti [100|| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1':53\97
&~ Y
2/20/2021 Buchares{ 0 || Craiova [160 R‘%ﬂlgéjli'-ITBSHARINATH 167

Heuristic [+] Cost [=] Total

M Sibiu
—140= 1121 75 Childre
Timisoara 329?rind 374 A r a.d 6 46

Sibiu | 253
140 99 151 80 1%1 7|1
— &L A = ' ' Fagaras 415
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti [100|| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1':53\97
&~ Y
2/20/2021 Buchares{ 0 || Craiova [160 R‘%'ﬂk':léj‘f-rr%HARlNATH 168

/99 ‘/211

Heuristic

Cost

—140="

Sibiu | 253
140 99 191 80
— K A
Arad |366| | Fagaras | 176] | Orades | 380

Ramnicu
Valcea

193

/146 N

Arad | 366
118 75

1

Timisoara

329?rind

[=] Total

374

|

M 71

y y

Lugoi | 244 Orades | 380
| |

70 151

y
Mehadia | 241 Sibiu | 253

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
e Y Fs_
. Ramni
2/20/2021 Bucharestl 0 || craiova | 160 ‘%'ﬂlgéj‘f

-IT93;|1ARINATH

Sibiu
Children
Arad

Fagaras

646
415

Orades
Ramnicu

169

/99 ‘/211

Heuristic

Cost

Sibiu | 253
140 99 191 80
— K A
Arad |366| | Fagaras | 176] | Orades | 380

Ramnicu
Valcea

193

/146 N

Arad | 366
1 40= 118 75

1

Timisoara

329?rind

[=] Total

374

|

M 71

y y

Lugoi | 244 Orades | 380
| |

70 151

y
Mehadia | 241 Sibiu | 253

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'35\97
e Y Fs_
. Ramni
2/20/2021 Bucharestl 0 || craiova | 160 m(?éj‘f

-IT93;|1ARINATH

Sibiu
Children
Arad

Fagaras

646
415

Orades
Ramnicu

170

Heuristic [+] Cost [=] Total

M Sibiu
—140=— 11§A 75 Children
Sibiu | 253 Timisoara 329?rind 374 AI‘ ad 6 46

|
140 99 151 80 M A
- & A - ' ' Fagaras 415
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S 671
—_— K — K 'y Y v B
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'38\97
&~ Y Fs_
. Rampi
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-HBS;I(ARINATH 171

Ramnicu

Heuristic [+] Cost [=] Total

Sibiu
140 g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 _-
140%‘151\80 i 7 —— —
/ ‘/ A Ramnicu : . Fagaras
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
) ' Orades
/99 ‘/211 /146 ‘/97 80* 7'0 1‘5’1

Arad | 366

Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 RamniCU
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%ﬂlgéjli'-ITBSHARINATH 172

Ramnicu

Heuristic [+] Cost [=] Total

M Sibiu
—140= 11§A 75 Children
Timisoara 329?rind 374 Arad 646

253
|
140 99 51 80 M 11
- & A - ' ' Fagaras 415
Arad |366| | Fagaras Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

Sibiu
1
176

| |
0211 146=—97" 80 70 151 Orades 671
4/ & 4/ s 'Y v v ——————
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1':53\97
e Y ?s_
. Ramni
2/20/2021 Buchares| 0 || Craiova | 160 ‘%Iﬂl(?éjli'-WBS;I(ARINATH 173

Ramnicu

Heuristic [+] Cost [=] Total

M Sibiu
—140=— 11§A 75 Children
Sibiu | 253 Timisoara 329?rind 374 AI‘ ad 6 46

|
140 99 151 80 M A
- & A - ' ' Fagaras 415
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S 671
—_— K — K 'y Y v B
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'35\97
&~ Y Fs_
. Rampi
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-HBS;I(ARINATH 174

Ramnicu

Heuristic Cost [=] Total

B E
M Sibiu
—140= 11§A 75 Children

+

Sibiu | 253 Timisoara| 329 Zerind | 374 A
rad 646
140 99 151 80 1%1 7|1
- & A - ' ' Fagaras 415
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146— 97 80 70 151 Orad €S 671
—_— K — K 'y Y v B
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu | 253 Ramn|Cu
101/1'38\97
=~ Y Fs_
. Rampi
2/20/2021 Bucharestl 0 || craiova | 160 m(?éjli'-WBS;I(ARINATH 175

Ramnicu

Heuristic [+] Cost [=] Total

B E
M Sibiu
—140= 11§A 75 Children

+

Sibiu 253 Timisoara| 329 Zerind | 374 A
rad 646
140 99 191 80 1%1 7|1
— & A > ' ' Fagaras 41
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

' ' Orades 671
/99 ‘/211 /146 ‘/97 80* 7'0 1‘5’1
Sibiu | 253 Bucharestl 0 Craiova | 160 | Pitesti [100|| Sibiu [253 Mehadia | 241 Sibiu | 253 RamniCU 413

101/1'38\97
= Y

. ‘R ' I‘I
BucharestIO Craiova | 160 mgéjli'-ﬁ% ARINATH 176

2/20/2021

Current Queue

Timisoar § Zerin

447 AVILS

2/20/2021 MGIT-IT-HARINATH 177

Current Queue

Timisoar | Zerin
447 449
Arad Fagara Orade
646 415 671

2/20/2021 MGIT-IT-HARINATH 178

Current Queue

W Fagara | Timisoar | Zerin @ Arad @@ Orade
415 447 449 646 671

2/20/2021 MGIT-IT-HARINATH 179

Current Queue

Fagara | Timisoar | Zerin @ Arad @@ Orade
415 447 449 646 671

2/20/2021 MGIT-IT-HARINATH 180

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

Ramnicu

Arad | 366
40— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140097 151 80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R\j\a'ﬂlc'léj‘f-rr%HARlNATH

182

Ramnicu

Arad | 366
140 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140097 151 80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 ngéjli'-ITBSHARINATH

Ramnicu
Children

Craiova

183

Ramnicu

Arad | 366 Ramnicu
40— g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 Craiova
140 99 151 80 1%1 7|1
i« A = ' L Pitesti
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146 97 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-ITBSHARINATH 184

Ramnicu

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 g0 11 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

185

Ramnicu

Arad | 366 Ramnicu
140 11§A 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 C -
Falova
140 99 151 80 1%1 7|1
—— & A e Y Y Pitesti
Arad |366| | Fagaras |176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
! ' Sibiu
99 211 146 97 80 70 151
— K — K '\ Y y
Sibiu | 253 BucharestIO Craiova | 160 Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/153\97
el I Calculate

2/20/2021

BucharestIO Craiova | 160 R\w%ﬂ-w& <T0ta| COSt 186

Ramnicu

Arad | 366 Ramnicu
140 11§A 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 C -
Falova
140 99 151 80 1%1 7|1
—— & A e Y Y Pitesti
Arad |366| | Fagaras |176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
! ' Sibiu
99 211 146 97 80 70 151
— K — K '\ Y y
Sibiu | 253 BucharestIO Craiova | 160 Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/138\97
Ll I N Calculate

2/20/2021

Bucharestlo Craiova | 160 R&'ﬂlﬁ‘i‘fm& Tﬂtal COSt 187

Ramnicu

M Ramnicu
140~ g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 -
%{3 . | Craiova
140 p R 1 i

0 : :
— e Pitesti
Arad |366| | Fagaras |176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

— Ty 73) 151 Sibiu

Sibiu | 253 BucharestIO Craiova | 160 Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

A
10177138 07
TR N Calculate @ Order _Select
2/20/2021 Buchares{ 0 | | Craiova | 160 Rj\a'ﬂl'&‘i‘f-rmsHA lotal Cost Asc. BMin. Cost

ced

Cralova

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 g0 11 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

189

Cralova

Heuristic
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 g0 11 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

190

Craiova

Heuristic Cost
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 g0 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

191

Craiova

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
99— 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

192

Craiova

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Ramnicu
Children

Craiova

Pitestl
Sibiu

193

Craiova

Heuristic

Cost

—140="

Sibiu 253
140 99 191 80
— & A

[=] Total

Arad |366] | Fagaras | 176] | Orades | 380 Rf,'m"'c” 193
alcea
99 211 146 97 80
(/ & — K b
Sibiu 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu 253
101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 RW. B3k
alcea |

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Ramnicu
Children

Craiova

Pitestl
Sibiu

194

Craiova

Heuristic

Cost

366

5

[=] Total
526

_140=— 118
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH

Ramnicu
Children

Craiova
Pitesti

Sibiu

195

Craiova

Heuristic [+] Cost [=] Total

S B G
M Ramnicu
__140— iy 75 Children

+

Sibiu | 253 Timisoara| 329 Zerind | 374 C -
ralova 526
140 99 191 80 1%1 7|1
— &L A e ' ' Pitesti
Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea b
' ! Sibiu

99 211 146 97 80 10 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti {100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 196

Ramnicu
Children

Cralova 526
Pitesti

Sibiu

197

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
99— 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Ramnicu
Children

Cralova 526
Pitesti

Sibiu

198

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Ramnicu
Children

Cralova 526
Pitesti

Sibiu

199

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rrBSHARlNATH
alcea

Heuristic [+] Cost [=] Total
31 B

-
M Ramnicu
_140— 75 Children

118
2\

+

Sibiu | 253 Timisoara| 329 Zerind | 374 C -
ralova 526
140 99 191 80 1%1 7|1
— &L A e ' ' Pitesti
Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea b
' ! Sibiu

99 211 146 97 80 10 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti {100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 200

Heuristic

Cost

Arad | 366
1 40= 118 75

1

[=] Total

Sibiu | 253 Timisoara 329?rind 374

| |

140= 097 151 =80 "1 71

/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380

| |

909" 211 1= 97”7 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Ramnicu
Children

526

Craiova

Pitesti
Sibiu

!
H
\l

201

Heuristic [+] Cost [=] Total

Arad | 366 Ramnicu
40— g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 Cr ai ova 52 6
140 99 151 80 1%1 7|1
/ ‘/ * Ramnicu)) PIteStI
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
' ' Sibiu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
=~ Y
2/20/2021 BucharestIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 202

Heuristic [+] Cost [=] Total

M Ramnicu
__140— iy 75 Children

Sibiu | 253 Timisoara 329?rind 374
ralova 526
140 99 151 80 1‘11 7I1
/ ‘/ * Ramnicu *) PIteStI
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
J J Sibiu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti {100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 203

Heuristic [+] Cost [=] Total

M Ramnicu
__140— g 75 Children

Timisoaral 329 Zerind | 374 -
| Cralova 526

Sibiu 253
|
140 99 151 80 111 71))
/ ‘/ * Ramnicu)) PIteStI
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
' ' Sibiu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R‘klﬂlgéjli'-ITBSHARINATH 204

Heuristic [+] Cost [=] Total

B =
M Ramnicu
10— 8 75 Children

11
4
Sibiu] 253 Timisoara| 329 Zerind | 374 C 1 ai ova 5 2 6

+

| |
140 99 151 80 111 71))
/ ‘/ * Ramnicu) " PIteStI 417
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
' ' Sibiu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y

BucharestIO Craiova | 160 R‘j\aﬂl%ﬁli'-ITBSHARINATH 205

2/20/2021 1)

Heuristic [+] Cost [=] Total

B =
M Ramnicu
10— 8 75 Children

1
4 T‘
Sibiu | 253 Timisoara| 329 Zerind | 374 C -
ralova 526
140 99 151 80 1%1 7|1
/ ‘/ * Ramnicu) " PIteStI 41
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| | thi
99 211 146 97 80 70 151 Slblu 553
—_— K — K 'y Y v Ek—
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y

. ‘R ' I‘I
BucharestIO Craiova | 160 ‘Kﬂlgéjli'-ﬁ% ARINATH 206

2/20/2021

Current Queue

Fagara @ Timisoar f Zerin @ Arad @ Orade
415 447 449 646 671

2/20/2021 MGIT-IT-HARINATH 207

Current Queue
Fagara @ Timisoar f Zerin @ Arad @ Orade
415 447 449 646 671
Craiova
526

2/20/2021 MGIT-IT-HARINATH 208

Current Queue
Fagara Timisoar g Zerin
415 447 449
Craiova Arad @ Orade
SYAS 646 671

2/20/2021 MGIT-IT-HARINATH 209

Current Queue
Fagara Timisoar g Zerin
415 447 449
Craiova Arad @ Orade
SYAS 646 671

2/20/2021 MGIT-IT-HARINATH 210

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

40—
Sibiu | 253
140097 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 146~ 977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\W'&‘i‘ﬁm
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

212

Arad | 366
140 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140097 151 80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 ngéjli'-ITBSHARINATH

Fagaras
Children

213

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%'ﬂk?éj‘f-rrBSHARlNATH

Fagaras

Children
Sibiu

Bucharest

214

140
Sibiu | 253
140 151 g0
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09" 211 146=977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/138\97
= \R;
2/20/2021 Bucharestlo Craiova | 160 W%‘i‘f-rresr
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

Calculate

lotal Cost

Fagaras

Children
Sibiu

Bucharest

215

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

140
Sibiu | 253
140= 097 151 =80
K« A .
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09" 211 146=977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/138\97
= y \R)
2/20/2021 Bucharestlo Craiova | 160 W%‘i‘f-rrear
alcea

Calculate B Order
I, lotal Cost AScC.

Fagaras
Children

216

—

Sibiu | 253
140 99 151 3
& 'y

Arad

366

— A

Fagaras

176

Orades

0
380 Ramnicu
Valcea

193

/146 N

Arad | 366
140 118 75
4

329?rind

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 191
 J y
Mehadia | 241 Sibiu] 253

Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/138\97
= y \R) _
2/20/2021 Buchares| 0 || Craiova | 160 mﬁj‘fm&

Fagaras
Children

Calculate g Oraerg Select
¥ lotal Costl@ ASC. BMin. Cost

Fagaras

Children
Sibiu

Bucharest

218

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
99— 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%'ﬂk?éj‘f-rrBSHARlNATH

Fagaras

Children
Sibiu

Bucharest

219

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Sibiu 253
140 99 191 80
— & A

Heuristic

Cost

—140="

[=] Total

Arad |366] | Fagaras | 176] | Orades | 380 Rf,'m"'c” 193
alcea
99 211 146 97 80
(/ & — K A
Sibiu 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu 253
101/1':)":3\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 RW. B3k
alcea |

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Fagaras

Children

Bucharest

220

Heuristic

Cost

—140="

Sibiu 253
140 99 191 80
— & A

[=] Total
591

Arad |366] | Fagaras | 176] | Orades | 380 Rf,'m"'c” 193
alcea
99 211 146 97 80
(/ & — K b
Sibiu 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu 253
101/1':)":3\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 RW. B3k
alcea |

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

Fagaras
Children

Bucharest

221

Heuristic [+] Cost [=] Total

2 B2

3
M Fagaras
140 8 75 Children

11 4
Timisoara| 329 Zerind | 374 Sibiu 501

Sibiu | 253
I |
140 99 151 80 111 A
- & A e . ; Bucharest

Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

+

99 211 146 97 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)";\97
= Y

2/20/2021 Buchares| 0 || Craiova | 160 R‘%Iﬂl%ﬁli'-rTBSHARINATH 222

Heuristic [+] Cost [=] Total

Arad | 366 Fag aras
40— g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 S -
Ibiu 591
140 99 151 80 1%1 7|1
- & A e . ; Bucharest
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146 97 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 223

Heuristic [+] Cost [=] Total

Arad | 366 Fag aras
40— g 75? Children
Sibiu | 253 Timisoara| 329 Zerind | 374 S -
Ibiu 591
140 99 151 80 1%1 7|1
- & A e . ; Bucharest
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| |
99 211 146 97 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)"?3\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 224

Heuristic [+] Cost [=] Total

M Fagaras
_ i 5 Children
Timisoara 329?rind 374 Sibiu 501

11{
|

Sibiu | 253
I
140 99 151 80 111 A
- & A e . ; Bucharest

Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

|
99 211 146 97 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)":3\97
= Y

2/20/2021 Buchares| 0 || Craiova | 160 Rm%ﬁli'-lTBSHARINATH 225

Heuristic [+] Cost [=] Total
Q450

0
M Fagaras
140 8 75 Children

11 4
Timisoara| 329 Zerind | 374 Sibiu 501

Sibiu | 253
| |
140 99 151 80 111 11
— & A j:icu ' ' Bucharest
380

+

Arad |366| | Fagaras | 176] | Orades v 193 Lugoi | 244 Orades | 380
alcea

| |

99 211 146 97 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':)";\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 226

Heuristic [+] Cost [=] Total
Q450

0
M Fagaras
140 8 75 Children

11 4
Timisoara| 329 Zerind | 374 Sibiu 501

Sibiu | 253
| |
140 99 151 80 111 11
— & j:icu : ' Bucharest 450
380

+

Arad |366| | Fagaras | 176] | Orades 193 Lugoi | 244 Orades | 380
Valcea

| |

99 211 146 97 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':)";\97
=~ Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH 227

Current Queue

Timisoar @ Zerin Craiova Arad ll Orade
447 449 526 046 671

2/20/2021 MGIT-IT-HARINATH 228

Current Queue
Timisoar l Zerin Craiova INEGR HOIET [

447 449 526 646 671
Buchare

450

2/20/2021 MGIT-IT-HARINATH 229

Current Queue
Timisoar l Zerin Craiova Buchare
447 449 526 450
Arad @ Orade
646 671

2/20/2021 MGIT-IT-HARINATH 230

Current Queue
Pitesti | Timisoar @ Zerin Craiova Buchare
417 447 449 526 450
Arad B Orade

646 671

2/20/2021 MGIT-IT-HARINATH 231

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

40—
Sibiu | 253
140097 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 146~ 977 80
4/ & — K A
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\W%‘i‘fmsr
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

233

Arad | 366
140 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140097 151 80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘:;:” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 ngéjli'-ITBSHARINATH

Pitesti
Children

234

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140= 097 151 =80 "1 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 146~ 977 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R\}a'ﬂlgéj‘f-rrBSHARlNATH

Pitesti

Children

Bucharest

Craiova

235

Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140 151 g0 11 71
/ K * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K '\ Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':)"?3\97
= Y
2/20/2021 BucharesEIO Craiova | 160 R\%ﬂlgéjli'-rTBSHARINATH

Pitesti
Children

Bucharest

Craiova

Ramnicu

236

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

140
Sibiu | 253
140= 097 151 =80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09— 21" =977 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/153\97
&~ Y \;
2/20/2021 BucharestIO Craiova | 160 M&éj‘f-rmsr

Calculate

lotal Cost

Pitesti
Children

Bucharest

Craiova

Ramnicu

237

Arad | 366
140 118 75
4

Pitesti
Children

Timisoara 329?rind 374
. | Bucharest
M 71 .
: Y Craiova
Lugoi | 244 Orades | 380
Tb 151 Ramnicu
Mehadia | 241 Sibiu | 253

Sibiu | 253
140= 097 151 =80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Re™™<U g3
Valcea
09" 211 1= 97”7 80
(/ & — K A
Sibiu | 253 BucharestIO Craiova | 160 | Pitesti | 100 Sibiu | 253
101/138\97
= \R;
2/20/2021 Buchares{ 0 || craiova | 160 W'&‘i‘f-rresr
alcea

Calculate
™ otal Cost

Order

ASC.

238

M Pitesti
_140— g 75? Children
Sibiu 253 Timisoara| 329 Zerind | 374
%{3 . | Bucharest
140 e N i T

0 :
— = Craiova
Arad |366| | Fagaras |176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380

— el /146 N 73) 151 Ramnicu
Sibiu 253 Bucharestl 0 Craiova | 160 || Pitesti [100]| Sibiu |253 Mehadia | 241 Sibiu 253
‘/101/158\97\ alculate @ Orderf Select
2/20/2021 Bucharesf| 0 Craiova | 160 R\%ﬂlgéjli'-ITBSHA COSt ASC- M|n COSt

/99 ‘/211

Sibiu | 253

/140 e

Heuristic

Cost

997 151
A

Arad

366

Fagaras

176

Orades

80
380 Ramnicu
Valcea

193

/146 N

Arad | 366
1 40= 118 75
4

329?rind

[=] Total

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':)":3\97
e Y
2/20/2021 Buchares{ 0 || Craiova | 160 R\%'ch'léj‘f-msr

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest

Craiova

Ramnicu

240

/99 ‘/211

Sibiu 253
140 99 191 8
— & A

Heuristic

Cost

Arad

366

Fagaras

176

Orades

0
380 Ramnicu
Valcea

193

/146 N

Arad | 366
1 40= 118 75
4

329?rind

[=] Total

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':)":3\97
e Y
2/20/2021 Buchares{ 0 || Craiova | 160 R\%'ch?éj‘f-msr

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest

Craiova

Ramnicu

241

Heuristic Cost [=] Total
-0 418
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Ramnicu
Children

Bucharest

Craiova

Ramnicu

242

418

Heuristic Cost [=] Total
-0 218 =
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoaral| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rrBSHARlNATH
alcea

Ramnicu
Children

Bucharest
Cralova

Ramnicu

243

Heuristic [+] Cost [=] Total

B BE
M Ramnicu
__140— iy 75 Children

Sibiu | 253 Timisoara 329?rind 374
ucharest 418
1407997 151 80 141 7‘1
- K& A e Y Y Craiova
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| | I
9= 211 146~ 977 80 70 151 Ramnicu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘%ﬂlgéjli'-ITBSHARINATH 244

Sibiu | 253

Craiova

Heuristic

Cost

Arad | 366
1 40= 118 75
4

329?rind

[=] Total

140= 097 151 =80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 1= 97”7 80
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':)":3\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\}'Wlﬁ‘i‘f-nesr
alcea

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest 418
Cralova

Ramnicu

245

Sibiu 253
140 99 191 8
— & A

Craiova

Heuristic

Cost

Arad

366

Fagaras

176

Orades

0
380 Ramnicu
Valcea
80

193

Arad | 366
1 40= 118 75
4

329?rind

[=] Total

99" 211 146~ 97
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':)";\97
e Y
2/20/2021 Buchares{ 0 || Craiova | 160 R\}'Wlﬁ‘i‘f-nesr
alcea

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest 418
Cralova

Ramnicu

246

Craiova

Ramnicu
Children

Bucharest 418
Cralova

Ramnicu

247

Heuristic Cost [=] Total
Arad | 366
_140=— 118 75
4
Sibiu | 253 Timisoara| 329 Zerind | 374
| |
140=99" 151 =80 111 71
/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 chl‘::;” 193 Lugoi | 244 Orades | 380
| |
909" 211 1= 97”7 80 70 151
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 || craiova | 160 R‘}'ﬂ%‘i‘f-rTBSHARlNATH
alcea

Craiova

Heuristic [+] Cost [=] Total

s E
M Ramnicu
10— 8 75 Children

11‘4

+

Sibiu | 253 Timisoara| 329 Zerind | 374 B
ucharest 418
140 99 191 80 1%1 7|1
— &L A e ' ' Craiova
Arad |366| | Fagaras | 176] | Orades | 380 193 Lugoi | 244 Orades | 380

Valcea ;
T |
99 211 146 97 80 10 151 Ram n I C u
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160 || Pitesti {100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares{ 0 | | Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 248

Craiova

Heuristic

Cost

Arad | 366
1 40= 118 75

1

[=] Total

Sibiu | 253 Timisoara 329?rind 374

| |

140= 097 151 =80 "1 71

/ / * . v v
Arad |366] | Fagaras | 176] | Orades | 380 RC::::;” 193 Lugoi | 244 Orades | 380

| |

909" 211 1= 97”7 80 70 151

— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253

101/1':53\97
= Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH

Ramnicu
Children

Bucharest 418

Cralova 61

Ramnicu

I

249

/140 e

Ramnicu

Heuristic

Cost

Sibiu | 253

997 151
A

Arad | 366

/99 ‘/211

Fagaras

176

Orades

80
380 Ramnicu
Valcea

193

/146 N

Arad | 366
1 40= 118 75
4

[=] Total

329?rind

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':)":3\97
e Y
2/20/2021 Buchares{ 0 || Craiova | 160 R\%'ch?éj‘f-msr

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest 418
Cralova 615

Ramnicu

250

Sibiu 253
140 99 191 8
— & A

Ramnicu

Heuristic

Cost

Arad | 366

/99 ‘/211

Fagaras

176

Orades

0
380 Ramnicu
Valcea

193

/146 N

Arad | 366
1 40= 118 75
4

[=] Total

329?rind

Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
e Y
2/20/2021 Buchares{ 0 || Craiova | 160 R\%'Hk':léj‘f-nesr

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest 418
Cralova 615

Ramnicu

251

Ramnicu

Heuristic

Cost

Arad | 366
118 75
4

329?rind

[=] Total

_140=—
Sibiu | 253
140= 097 151 =80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 1= 97”7 80
(/ & — K b
Sibiu | 253 BucharestIO Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1':53\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R‘}'ﬂ%‘i‘f-m
alcea

Timisoara 374
| |
1M1 71
y y
Lugoi | 244 Orades | 380
| |
70 151
y
Mehadia | 241 Sibiu | 253
1IARINATH

Ramnicu
Children

Bucharest 418
Cralova 615

Ramnicu

252

Ramnicu

Heuristic [+] Cost [=] Total

=R cor
M Ramnicu
__140— iy 75 Children

Sibiu | 253 Timisoara| 329 Zerind | 374 B uc h areSt 4 18

+

| |
140 99 151 80 111 T .
L« A = ' ' Craiova 615
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| | I
99 211 146 97 80 70 151 Ram nicu
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y
2/20/2021 BucharestIO Craiova | 160 R‘%'ﬂk':léj‘f-rr%HARlNATH 253

Ramnicu

Heuristic [+] Cost [=] Total

=R cor
M Ramnicu
__140— iy 75 Children

+

Sibiu | 253 Timisoara| 329 Zerind | 374 B
ucharest 418
140 99 151 80 1%1 7|1
L« A = ' ' Craiova 61
Arad |366| | Fagaras | 176] | Orades | 380 Valcea 193 Lugoi | 244 Orades | 380
| | I
99 211 146 97 80 70 151 Ramn|CU 607
— K — K 'Y Y v
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253 Mehadia | 241 Sibiu | 253
101/1':53\97
=~ Y
2/20/2021 BucharestIO Craiova | 160 R‘%ﬂlgéjli'-ITBSHARINATH 254

Current Queue
Timisoar @ Zerin Craiova Buchare
447 449 526 450
Arad B Orade
646 671
Bucharesfl Craiovall Ramnic
418 615 607

2/20/2021 MGIT-IT-HARINATH 255

Current Queue

Bucharesg Timisoar g Zerin § Craiova Buchare
418 447 VAVARS 526 450
Ramnic § Craiovajl Arad § Orade
607 615 646 671

2/20/2021 MGIT-IT-HARINATH 256

Current Queue

Buchare B Timisoar f§ Zerin § Craiova Buchare
418 447 AVAXS 526 450
Ramnic § Craiova Arad @ Orade
607 615 646 671

2/20/2021 MGIT-IT-HARINATH 257

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253

e 140
Sibiu] 253
140 99 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
99 211 146 97 80
(/ y (/ ' A
Sibiu | 253 BucharestIO Craiova [160 || Pitesti | 100 Sibiu | 253
101/1'38\97
=~ Y ?
Bucharesf] 0 Craiova | 160 Rampicy 193
Valcea

40—
Sibiu | 253
140097 151 80
— K& A _
Arad | 366] | Fagaras | 176] | orades |aso| |Ra™™<U g3
Valcea
909" 211 146~ 977 80
4/ & (/ K A
Sibiu | 253 Bucharestlo Craiova | 160]| Pitesti | 100 Sibiu | 253
101/1'38\97
= Y
2/20/2021 Buchares| 0 | | Craiova | 160 R\}'ﬂ?ﬁﬁ‘f-nesr
alcea

Arad | 366
118 75
4
Timisoara| 329 Zerind | 374
| |
111 71
y y
Lugoi | 244 Orades | 380
| |
70 151
\ A y
Mehadia | 241 Sibiu 253
IARINATH

259

Arad | 366
| 40 118 T
4

Sibiu | 253 Timisoara| 329 Zerind | 374

| |

140 99 151 80 111 71

— & A _ Y Y
Arad |366] | Fagaras | 176] | Orades | 380 R\‘}‘;'I‘:;g” 193 Lugoi | 244 Orades | 380

1 |

99 211 146 97 80 70 151

— K — K 'y Y y
Sibiu | 253 Bucharesflo Craiova | 160 || Pitesti |100 Sibiu | 253 Mehadia | 241 Sibiu | 253

0 18 o7
= Y F
Bucharesf] 0 Craiova | 160 Rampicy 193
Vaicea

Path to Goal

Arad

366
118\75
4 T
Timisoara] 329 Zerind | 374
| |
111 71
\ 4 \ 4
Lugoi | 244 Orades | 380
1 |
70 151
v 4
Mehadia | 241 Sibiu 253

140
Sibiu | 253
10—357 5T ——t0
Arad |366| |Fagaras |176] | orades |3s0| |Ramnicu| gq
Valcea
99 11 146-""'5'7/—\ 80
— & —. '\
Sibiu 253 Bucharesf] 0O Craiova | 160 Pitesti 100 Sibiu 253
101 1([38\97
_ v ~
Bucharest| 0 Craiova | 160 Ramnicu 193
Valcea

Analysis

» A* is optimally efficient for any given Consistent
heuristic.

» A* Search is Complete, Optimal.

» A* usually keeps all generated nodes in Memory.

» A* runs out of space long before it runs out of time.
» A* is not practical for many large-scale Problem:s.

2/20/2021 MGIT-IT-HARINATH 262

A*(Admissible Heuristic)

»h(n) is Admissible Heuristic that never over estimates
the cost to reach the goal.

Qb“"‘wa Ac,(wo**l
F)(h) o A~ (n _ uvrderestimafion

F?(Y’) — F)(nz.bgngvv«.ué;mq{wm

2/20/2021 MGIT-IT-HARINATH 263

Memory Bounded Heuristic Search

IDA*

»Simplest way to reduce memory requirements is to adapt
idea of Iterative Deepening to Heuristic Search content.
» Difference

-Use Cutoff f-cost(f+g) rather than depth.(IDA*)

Memory Bounded Heuristic Search

Recursive BFS(Best First Search)

»Simple recursive algorithm

»Similar to Recursive Depth-First Search but uses f-limit
variable to keep track of f-value of best alternative path.
»If Current Node exceeds the limit then back track choose
alternate path.

» RBFS replaces f-value of each node along the path with
the backed up value(best f-value of its children)

Analysis

»|DA* and RBFS suffer from using too little memory.
»|DA* retains only current f-cost limit

»RBFS retains more information in Memory but it uses
Linear Space.

2/20/2021 MGIT-IT-HARINATH 266

Using available Memory in A*

» MA*(Memory Bound A¥)

» SMA*(Simplified Memory Bound A¥*)

»SMA* is simple, similar to A*(expands best leaf node until
Memory is full)

»SMA* always drops the worst leaf node(one with highest
f-value).

»SMA* backs up value of the forgotten node to its
parent(like RBFS)

Heuristic Functions

»Technique to solve problems quickly

»Eg: 8 Puzzle Problem(32°-Search Space possible)
v'h1- No of misplaced tiles
v'h2-Mahanhatten Distance

»h2- admissible

Generating Admissible Heuristic from
Relaxed Problems

»Problem with fewer restrictions(Relaxed Problem)
»Super Graph(State Space Graph of Relaxed Problem)

» Creates additional edges(Removal of restrictions)

» Relaxed Problems better solution if added edges provide
shortcuts.

Generating Admissible Heuristic from
Sub Problems

» Pattern Databases.

» Store exact solution costs for every possible subproblem
instance.

» Compute Admissible Heuristic for Complete State by
observing corresponding sub problem configuration in
Database.

Learning Heuristic from Experience

» Experience (Solving lot of Problems).

» Construct function h(n)-(from example problems)

» Inductive Learning(Works Best when supplied with
features of the State that are relevant to predicting states
value)

e Before an agent can start searching for solutions, a goal must be identified and a well-
defined problem must be formulated.

e A problem consists of five parts: the initial state, a set of actions, a transition model
describing the results of those actions, a goal test function, and a path cost function.
The environment of the problem is represented by a state space. A path through the
state space from the initial state to a goal state 1s a solution.

e Search algorithms treat states and actions as atomic: they do not consider any internal
structure they might possess.

e A general TREE-SEARCH algorithm considers all possible paths to find a solution,
whereas a GRAPH-SEARCH algorithm avoids consideration of redundant paths.

e Search algorithms are judged on the basis of completeness, optimality, time complex-
ity, and space complexity. Complexity depends on b, the branching factor in the state
space, and d, the depth of the shallowest solution.

2/20/2021 MGIT-IT-HARINATH 272

e Uninformed search methods have access only to the problem definition. The basic
algorithms are as follows:

— Breadth-first search expands the shallowest nodes first; it is complete, optimal
for unit step costs, but has exponential space complexity.

— Uniform-cost search expands the node with lowest path cost, g(n), and is optimal
for general step costs.

— Depth-first search expands the deepest unexpanded node first. It is neither com-
plete nor optimal, but has linear space complexity. Depth-limited search adds a
depth bound.

— Iterative deepening search calls depth-first search with increasing depth limits
until a goal 1s found. It is complete, optimal for unit step costs, has time complexity
comparable to breadth-first search, and has linear space complexity.

— Bidirectional search can enormously reduce time complexity, but it is not always
applicable and may require too much space.

2/20/2021 MGIT-IT-HARINATH 273

e Informed search methods may have access to a heuristic function h(n) that estimates
the cost of a solution from 7.

— The generic best-first search algorithm selects a node for expansion according to
an evaluation function.

— Greedy best-first search expands nodes with minimal A(n). It is not optimal but
is often efficient.

— A* search expands nodes with minimal f(n) = g(n) + h(n). A* is complete and
optimal, provided that A(n) is admissible (for TREE-SEARCH) or consistent (for
GRAPH-SEARCH). The space complexity of A" is still prohibitive.

— RBFS (recursive best-first search) and SMA* (simplified memory-bounded A*)
are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems that A® cannot solve because it runs out of
memory.

e The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem defi-
nition, by storing precomputed solution costs for subproblems in a pattern database, or
by learning from experience with the problem class.

2/20/2021 MGIT-IT-HARINATH 274

Thank you

2222222222222222222222222

Uninformed Search

»An uninformed (a.k.a. blind, brute-force) search algorithm
generates the search tree without using any domain specific

knowledge.
»No additional information about states beyond that provided in

the problem definition.

»All they can do is generate successors and distinguish a goal
state from a non-goal state.

» All search strategies are distinguished by the order in which
nodes are expanded.

BREADTH -
FIRST
SEARCH

Breadth-First Search

» Expand shallowest unexpanded node
» Implementation:

A FIFO queue, i.e., new successors go at
end.

Example-Graph

Example

Label all start states as set V5

Label all successors of states in Vj that have not yet been labelled as set V)

Example

Label all successors of states in V) that have not yet been labelled as set V5

Example

Label all successors of states in V5 that have not yet been labelled as set V3

Example

Label all successors of states in V5 that have not yet been labelled as set V

Example: Recovering the path

w0 steps
- 1 step
- 2 steps
3steps (O,
- 4 steps s

.......

Breadth-First
Search Goal -

Breadth-First
Search Goal -

Breadth-First
]

Search Goal -

Breadth-First " Current
Search Goal - —

Breadth-First
Search Goal -

Breadth-First
Search Goal -

Breadth-First
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current Waiting
Search Goal -

Breadth-First Current

Waiting
Search Goal -

C,D

_ Waiting
|
D

D, E, F

Breadth-First
Search Goal -]
B
5
D
D

Breadth-First
Search Goal -

Current

EHHEHHEI
[Tl o
T O @

Waiting

D, E, F

Breadth-First
Search Goal -

Current

EHHEHHEI
[Tl o
T O @

Waiting

D, E, F

Breadth-First
Search Goal -

Current

EEHHEEEEI

Waiting

D, E, F

[Tl o
T O @

Breadth-First
Search Goal -

Current

EEHHEEHEI
[Tl o
T O @

Waiting

D, E, F

E’ F’ G’

Breadth-First
Search Goal - D

SI,B G
e
r:
-ra
th
n -F
{
®
urre
N
t
W
E E
a
’ ilil
;rzag
H

E
E

Breadth-First
Search Goal -

D

Waiting

E,FG, H
F G, H

Breadth-First
Search Goal -

D

Waiting

E,FG, H
F G, H

Breadth-First
Search Goal -

Waiting

E,FG, H
F G, H

Breadth-First
Search Goal -

Waiting

E,FG, H
F G, H
F G, H I J

Breadth-First
Search Goal -

Current

Waiting

E,FG, H
F G, H
F G, H I J

Breadth-First
Search Goal -

Current

Waiting

E,FG, H
F G, H
F G, H I J
G HIJ

Breadth-First
Search Goal -

Current

Waiting

E,FG, H
F G, H
F G, H I J
G HIJ

Breadth-First
Search Goal -

Current

Waiting

E,FG, H
F G, H
F G, H I J
G HIJ

Breadth-First
Search Goal -

Current

Waiting

E,FG, H
F G, H
F G, H I J
G HIJ
G H,IJ KL

Breadth-First Current
Search Goal -

Waiting

E,FG, H
F G, H
F G, H I J
G HIJ
G H,IJ KL

Breadth-First Current
Search Goal -

Waiting

_ Waiting_
_EFRGH
_FGH
_FGHILJ
_GH1LI
G H.LJKL

E,FG, H
F G, H
F G, H I J
G HIJ
G H,IJ KL

Breadth-First Current
Search Goal -

Waiting

_ Waiting_
_EFRGH
_FGH
_FGHILJ
_GH1LI
G H.LJKL

E,FG, H
F G, H
F G, H I J
G HIJ
G H,IJ KL

Breadth-First
Search Goal - D

Breadth-First
Search Goal -

Current

EHHHHHEI
L
2
A
a

Waiting
E,FG, H
F G, H
F G, H, I,

G,H,IJ
G HIJ K,L

(@

,J, K, L

Breadth-First
Search Goal -

Current

EHHHHHEI
L
2
A
a

Waiting
E,FG, H
F G, H
F G, H, I,

G,H,IJ
G HIJ K,L

(@

,J, K, L

Breadth-First
Search Goal - D
il

Breadth-First Search Current

Waiting
Goal - Node J

E,FG, H
F G, H
F G, H, I,
G HIJ
G, H, I, J, K,

(@

—

L
[
A
—

,J, K, L

(-

1K1

—

HEHHHHHEI

Breadth-First Search
Goal - Node J

Current

HEHHHHHEI

Waiting
E,FG, H
F G, H
F G, H, I,

G,H,IJ
G HIJ K,L

(@

L
-
A
—

,J, K, L

(-

1K1

—

Breadth-First
Search Goal -

Current

HHEHHHHHEI

Waiting
E,FG, H
F G, H
F G, H, I,

G,H,IJ
G HIJ K,L

(@

L
-
A
—

,J, K, L

(-

1K1

—

Breadth-First Current

Waiting
Search Goal -

E,FG, H
F G, H
F G, H I J
G HIJ
G, H, I, J, K,

—

,J, K, L
J, K, L

HHEHHHHHEI
L

..x =

= =
A
a

Breadth-First Current

Waiting
Search Goal -

E,FG, H
F G, H
F G, H I J
G HIJ
G, H, I, J, K,

—

,J, K, L
J, K, L

EEHHHHHEI
L

..x =

= =
A
a

Breadth-First
Search Goal -

Current

EEHHHHHEI
_I

-x ‘_

— =
_X
=

Waiting
E,FG, H
F G, H
FG,H,IJ
G,H,IJ
G HIJ K,L

,J, K, L
J, K, L

BFS Algorithm

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node <+ a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element
explored «+— an empty set
loop do
if EMPTY?(frontier) then return failure
node «<— POP(frontier) [* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem .ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Analyzing BFS

Good news:

— Complete

— Guaranteed to find the shallowest path to the goal This is not necessarily
the best path! But we can “fix” the algorithm to get the best path.

— Different start-goal combinations can be explored at the same time

Bad news:

— Exponential time complexity: O(b?) (why?) This is the same for all
uninformed search methods

— Exponential memory requirements! O(b°) (why?) This is not good...

DEPTH - FIRST
SEARCH

DFS

m In depth-first search, we start with
the root node and completely
explore the descendants of a node
before exploring its siblings (and
siblings are explored in a left- to-
right fashion).

m Depth-first search always expands
the deepest node in the current
frontier of the search tree.

m LIFO queue

Depth-firsttraversal: 1 -2 -4 —->5—-53 56 > 7

Depth-First " Current.
Search Goal - e

Depth-First
Search Goal -

Depth-First
Search Goal -

Depth-First
Search Goal -

Depth-First
Search Goal -

Depth-First
Search Goal -

Current

Depth-First
Search Goal -

Current

Depth-First c
Search Goal -

urrent

Depth-First c
Search Goal -

urrent

Depth-First
Search Goal -

Current

olojol»> I

Depth-First c
Search Goal -

urrent

Depth-First c
Search Goal -

urrent

Depth-First c
Search Goal -

urrent

o|z|clolol=> I

Depth-First
Search Goal -

Current

olojz(ofojo]al> I

Depth-First
Search Goal -

Current

>|=[o]z]ololol=(> I

Depth-First
Search Goal -

Current

o

>|olo]z|ololole]>

Depth-First
Search Goal -

Current

o

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

mlo

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

mlo

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

—|mlo

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

—|mlo

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

m|-|m|o

>|=[o]z]ololol=(>

Depth-First
Search Goal -

Current

<|m|-[mo

>|olojz]ololol=(>

Depth-First
Search Goal -

Current

<|m|-[mo

>|olojz]ololol=(>

Depth-First
Search Goal -

Current

GOAL

>|oloz|ololole]>
IHHIHH

Analyzing DFS

»Not Optimal
»Not Complete

» Time Complexity-O(b™)-(m is maximum depth of any
node)

»Space Complexity-O(bm)

UNIFORM-
COST
SEARCH

Fixing BFS To Get An Optimal Path

**Use a priority queue instead of a simple
queue

“*Insert nodes in the increasing order of the
cost of the path so far

“*Guaranteed to find an optimal solution!
**This algorithm is called uniform-cost search

Continued

‘*Instead of Expanding shallowest node the node n with
the Lowest Path Cost g(n) is expanded

*»Differences

--Goal Test is applied to a node when it is selected
for expansion

--Test is added in case a better path is found to a
node currently on frontier

Example 1

Cost
contours

@ 3 © 9 ® 1
A R —— e |
s @) (@5 (W17 (H11 @ 16
A AL
@6 a W7 g f

AN N
AL
g 11(0) @10 a

Example 2

: Waiting
Uniform Cost

Search Goal -
Node G

: Waiting
Uniform Cost

Search Goal -
Node G

_ Waitin
Uniform Cost

Search Goal - So
Node G

_ Waitin
Uniform Cost

Search Goal - So
Node G =

_ Waitin
Uniform Cost

Search Goal - S

_ Waitin

Uniform Cost

ﬁlezrcg Goal -]
ode

G12

_ Waitin

Uniform Cost

ﬁlezrcg Goal -]
ode

G12

: Waiting
Uniform Cost Ordered

Search Goal -
Node G

, G12
G12

Uniform Cost

Search Goal -
Node G

Uniform Cost
Search Goal -
Node G

Waiting
Ordered

Aq, G172

12
C2, B4, G12

Uniform Cost
Search Goal -
Node G

Waiting
Ordered

Aq, G172

C2, By, G12
B4, G12

[
\®

Uniform Cost
Search Goal -
Node G

Waiting
Ordered

Aq, G172

C2, By, G12
B4, G12

[
\®

Uniform Cost
Search Goal -
Node G

Waiting
Ordered

Aq, G172

C2, By, G12
B4, G12

[
\®

Uniform Cost
Search Goal -
Node G

Waiting
Ordered

|

Waiting

Uniform Cost Current Ordered

Search Goal -
Node G

Ay, G12
12
C2, B4, G2
By, Gq2

D3, By, Gy, G12

=l Kol Hp!
IIHEEEEI

Waiting

Uniform Cost Current Ordered

Search Goal -
Node G

Aq, G172
G12
C2, By, G12

D3, B4, G4, G12
B4, Ga, G12

D

Waiting

Uniform Cost Current Ordered

Search Goal -
Node G

Aq, G172
G12
C2, By, G12

D3, B4, G4, G12
B4, Ga, G12

D

Waiting

Uniform Cost Current Ordered

Search Goal -
Node G

Aq, G172

C2, B4, G12

D
= o
e
N

B4,
D3, B4, G4, G12

B4, Ga, G12

EEHEEEEEI

- Waiting
Uniform Cost Current Ordered
Search Goal -

Node G

Aq, G172

C2, B4, G12

D
= o
e
N

B4,
D3, B4, G4, G12

B4, Ga, G12
By, Gy, Gg, G12

O

IEHEEEEEI

Waiting

G4, Gg, G12

Uniform Cost
Search Goal -
Node G

Waiting

G4, Gg, G12

Uniform Cost
Search Goal -
Node G

_ Waitin
Uniform Cost

G4, Gg, G12

Search Goal - B,
Node G

: Waiting
Uniform Cost
gegrcg Goal -

ode G4, Gg, D7, G12

: Waiting
Uniform Cost
Search Goal - Gs. Ge. G1>
Node G

G4, Go, D7, G12

: Waiting
Uniform Cost
Search Goal ;

ode

Ge, D7, G12

: Waiting
Uniform Cost
Search Goal ;

ode

Ge, D7, G12

: Waiting
Uniform Cost Ordered

Search Goal -

G4, G, G12
NOde G , Gg, D7, G172

Ge, D7, G12

GOAL

: Waiting
Uniform Cost Ordered

Search Goal - Ga. Ge. G1»

NOde G G4, Gg, D7, G2
G61 D71 612

GOAL

Solve using BFS &
: DFS Compare
Costs

function UNTFORM-COST-SEARCH(prohlem) returns a solution, or failure

node < a node with STATE = problem.INITIAL-STATE, PATH-COST = ()
frontier < a priority queue ordered by PATH-COST, with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child « CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
frontier « INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Analyzing Uniform Cost Search

» Optimal

» Complete(lf Cost of every step exceeds some
positive constant &)

> Time Complexity-O(b1*(c*/¢))

>Space Complexity-O(b1+(c*/¢))

»UCS examines all the nodes at Goal Depth to
see if one has a lower cost.

COMPARISION

Algorithm Complete (Optimal [Time Space

/ Path
DFS gheiing Y N O(b™) O(bm)
BFS i 1 O(bY) O(b%)
UCS Y* Y O(bC*) O(bC*%)

DEPTH - LIMITED
SEARCH

DEPTH-LIMITED-SEARCH

» The embarrassing failure of depth-first search in infinite state spaces can

be alleviated by supplying depth-first search with a predetermined
depth limit .

» That is, nodes at depth are treated as if they have no successors. This
approach is called depth-limited search. The depth limit solves the
infinite-path problem.

» Depth-limited search can be implemented as a simple modification to
the general tree or graph-search algorithm.

» Notice that depth-limited search can terminate with two kinds of failure:
The standard failure value indicates no solution.

The cutoff value indicates no solution within the depth limit.

DEPTH-LIMITED SEARCH (EXAMPLE-1)

Limit=0

Limit= 1

Limit=2

Depth-Limited Search (DLS)

0/00&0

= A,

Limit=2

Depth-Limited Search (DLS)

‘/{‘/00&0

= AB,

Limit=2

Depth-Limited Search (DLS)

‘/{‘/00&0

= AB,E

Limit=2

Depth-Limited Search (DLS)

‘/{‘/00&0

= AB,F
= G,

Limit=2

Depth-Limited Search (DLS)

= ABJF
= G,
= C

A
OB/QQC‘ -
\
Limit = 2 D

Depth-Limited Search (DLS)

= ABJF
= G,
= CH,

A
OB/QQC‘\ -
Limit = 2 (5

Depth-Limited Search (DLS)

= ABF
= G,

= CH,
v @ e

Limit=2

Depth-Limited Search (DLS)

= ABF
= G,

= CH,

= DI &
A y 2\

Limit=2

\
@

Depth-Limited Search (DLS)

= AB,F

= G,

= CH,

* D/ /o&o
=) & $

Limit=2

Depth-Limited Search (DLS)

= ABE
= G

= CH,
= Dl
=),

= E

Limit=2

Depth-Limited Search (DLS)

= ABE

« G,

= CH,

* O} % o
=), & $

= E, Failure

Limit=2

Depth-Limited Search (DLS)

= DLS algorithm returns Failure (no solution)

= Thereason is that the goal is beyond the limit (Limit =2): the goal depth is
(d=4)

Depth-Limited Search prayreers
Depth — 3, Goal — Node J o

Depth-Limited Search groyrery
Depth — 3, Goal — Node J —

Depth-Limited Search groyrery
Depth — 3, Goal — Node J —

Depth-Limited Search prayreers
Depth — 3, Goal — Node J —

Depth-Limited Search pragreeery
Depth — 3, Goal — Node J —

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

Depth-Limited Search
Depth — 3, Goal — Node J

Depth-Limited Search
Depth — 3, Goal — Node J

Depth-Limited Search
Depth — 3, Goal — Node J

Depth-Limited Search
Depth — 3, Goal — Node J

Depth-Limited Search
Depth — 3, Goal — Node J

Depth-Limited Search
Depth — 3, Goal — Node J

B
D
D

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

olz|ololoje]> I

Depth-Limited Search
Depth — 3, Goal — Node J

B
D
D
D
B

Depth-Limited Search
Depth — 3, Goal — Node J

B
D
D
D
B

Depth-Limited Search
Depth — 3, Goal — Node J

B
D
D
D
B

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

>|olo]z|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

HHI|

>|olo]z|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

o

>|olo]z|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

—|m o I

>|olo]z|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

—|m o I

>|olo]z|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

m-|mo I

>|olo]z|ololole]>

Depth-Limited Search
Depth — 3, Goal — Node J

Current

<|m|-[mo

>|oloz|ololole]>

Depth-Limited Search
Depth — 3, Goal — Node J

Current

<|m|—[mo

>|oloz|ololole]>

Depth-Limited Search C
Depth — 3, Goal — Node J

urrent

BNE
Ll N
Ll EB

L [
D

B

GOAL

Depth-Limited Search " Current
Depth — 3, Goal — Node C o

Depth-Limited Search " Current
Depth — 3, Goal — Node C —

Depth-Limited Search " Current
Depth — 3, Goal — Node C —

Depth-Limited Search " Current
Depth — 3, Goal — Node C —

Depth-Limited Search " Current
Depth — 3, Goal — Node C —

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

Depth-Limited Search
Depth — 3, Goal — Node C

B
D
D

Depth-Limited Search C
Depth — 3, Goal — Node C

urrent

olz|ololoje]> I

Depth-Limited Search
Depth — 3, Goal — Node C

B
D
D
D
B

Depth-Limited Search
Depth — 3, Goal — Node C

B
D
D
D
B

Depth-Limited Search C
Depth — 3, Goal — Node C

urrent

>|olo]z|ololole]>

Depth-Limited Search
Depth — 3, Goal — Node C

B
D
D
D
B

Depth-Limited Search
Depth — 3, Goal — Node C

0] o
iil
>
=

>|olo]z|ololole]>

Depth-Limited Search
Depth — 3, Goal — Node C

Current

0] |
iil
>
=

>|olo]z|ololole]>

Depth is Large

Depth-Limited Search Clrrent
Depth — 2, Goal — Node J

Depth-Limited Search " Current
Depth — 2, Goal — Node J

Depth-Limited Search Clrrent
Depth — 2, Goal — Node J

Depth-Limited Search Clrrent
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Depth-Limited Search
Depth — 2, Goal — Node J

Current

Search NO
Finished GOAL

Depth-Limited Search
Depth — 2, Goal — Node J

Search NO
Finished GOA

Depth 1s Small

Depth-Limited Search
Depth — 2, Goal — Node J

Finished

Depth is Small NO GOAL

function DEPTH-LIMITED-SEARCH(problem, lvmit) returns a solution, or failure/cutoft
return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if [imit = 0 then return cutoff
else
cutoff-occurred? «— false
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
result «— RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff_occurred? then return cutoff else return failure

Figure 3.17 A recursive implementation of depth-limited tree search.

Analysing Depth-Limit Search

» Not Optimal

» Not Complete

»Time Complexity- O(b')
»Space Complexity-O(bl)

ITERATIVE
DEEPENING

SEARCH

Iterative Deepening Search

» It’s a Depth First Search, but it does it one level at a time, gradually
increasing the limit, until a goal is found.

» Combine the benefits of depth-first and breadth-first search
» Like DFS, modest memory requirements

» Like BFS, it is complete when branching factor is finite, and optimal
when the path cost is a non decreasing function of the dept of the
node.

Iterative Deepening Search

» May seem wasteful because states are generated multiple times

» But actually not very costly, because nodes at the bottom level are
generated only once.

» In practice, however, the overhead of these multiple expansions is
small, because most of the nodes are towards leaves (bottom) of the
search tree:

* Thus, the nodes that are evaluated several times (towards top of
tree) are in relatively small number.

> Iterative depending is the preferred uninformed search method when
the search space is large and the depth of the solution is unknown

Iterative Deepening Search with I=0

Iterative Deepening Search with I=1

© o e o« e o e

imit = 2 ()

Iterative Deepening Search with |=2

(A (A)
) (C) (5] ()
(5] (£))

'
S

Iterative Deepening Search with |=3

4‘(<\
Ki\ S
R ST I ST T S

lterative Deepening Search grypery
Depth — 0, Goal — Node J o

lterative Deepening Search grgrem
Depth — 0, Goal — Node J —

lterative Deepening Search pryreere
Depth — 0, Goal — Node J —

lterative Deepening Search
Depth — 0, Goal — Node J

Search Finished NO
GOAL
Increase Depth by 1

lterative Deepening Search pryreery
Depth — 1, Goal — Node J o

lterative Deepening Search pryreery
Depth — 1, Goal — Node J —

lterative Deepening Search gryrer
Depth — 1, Goal — Node J —

lterative Deepening Search grypery
Depth — 1, Goal — Node J —

lterative Deepening Search grymre
Depth — 1, Goal — Node J —

lterative Deepening Search pryreery
Depth — 1, Goal — Node J —

lterative Deepening Search
Depth — 1, Goal — Node J

lterative Deepening Search
Depth — 1, Goal — Node J

lterative Deepening Search
Depth — 1, Goal — Node J

Search Finished
NO GOAL
Increase Depth by 1

lterative Deepening Search pryreere
Depth — 2, Goal — Node J o

lterative Deepening Search gryre
Depth — 2, Goal — Node J —

lterative Deepening Search pryreere
Depth — 2, Goal — Node J —

lterative Deepening Search grgrem
Depth — 2, Goal — Node J —

lterative Deepening Search grgrem
Depth — 2, Goal — Node J —

lterative Deepening Search gryper
Depth — 2, Goal — Node J —

lterative Deepening Search grgrem
Depth — 2, Goal — Node J —

lterative Deepening Search
Depth — 2, Goal — Node J

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search
Depth — 2, Goal — Node J

Current

lterative Deepening Search pggs
Depth — 2, Goal — Node J

urrent

Search Finished
NO GOAL
Increase Depth by

lterative Deepening Search gy
Depth — 3, Goal — Node J o

lterative Deepening Search gryrery
Depth — 3, Goal — Node J —

lterative Deepening Search gy
Depth — 3, Goal — Node J —

lterative Deepening Search gryre
Depth — 3, Goal — Node J —

lterative Deepening Search gryre
Depth — 3, Goal — Node J —

lterative Deepening Search gryrery
Depth — 3, Goal — Node J —

lterative Deepening Search gryre
Depth — 3, Goal — Node J —

lterative Deepening Search
Depth — 3, Goal — Node J

lterative Deepening Search
Depth — 3, Goal — Node J

lterative Deepening Search
Depth — 3, Goal — Node J

lterative Deepening Search
Depth — 3, Goal — Node J

Current

lterative Deepening Search
Depth — 3, Goal — Node J

Current

lterative Deepening Search
Depth — 3, Goal — Node J

B
D
D
D

lterative Deepening Search
Depth — 3, Goal — Node J

B
D
D
D
B

lterative Deepening Search
Depth — 3, Goal — Node J

B
D
D
D
B

lterative Deepening Search
Depth — 3, Goal — Node J

B
D
D
D
B

lterative Deepening Search
Depth — 3, Goal — Node J

B
D
D
D
B

lterative Deepening Search
Depth — 3, Goal — Node J

Current

mlo

>|olo]z|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

mlo

>|olo]z|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

—|m o

>|olo]z|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

—|m o

>|olo]z|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

m-|mo

>|olo]z|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

<|m|-[mo

>|oloz|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

<|m|—[mo

>|oloz|ololole]>

lterative Deepening Search
Depth — 3, Goal — Node J

Current

BNE
Ll B
E

H

D GOAL
B

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth =0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solution is found or if the depth-
limited search returns failure, meaning that no solution exists.

Iterative Deepening Search

Combines the best of breadth-first and
depth-first search strategies.

e Completeness: Yes,

e Time complexity: O(b?9)

e Space complexity: O(bd)

e Optimality: Yes, if step cost =1

Properties of Iterative Deepening Search

m Complete? Yes (b finite)

mTime? dbl+ (d-1)b2+ ... + hd= O(bd)
m Space? O(bd)

m Optimal? Yes, If step costs identical

Bidirectional
Search

Both search forward from Stop when the two

initial state, and — searches meet in
backwards from goal. the middle.

Motivation: bd/2 + pd/2js

much less thanbd — Implementation

l

Replace the goal test
with a check to see
whether the frontiers of
the two searches
intersect, if yes
- solution is found

Bi directional Search

= Forward
Backwards

Bidirectional

Search

Not always optimal, even if both
searches are BFS

Check when each node iIs expanded
or selected for expansion

Can be implemented using BFS or
Iterative deepening (but at least one
frontier needs to be kept in memory)

Significant weakness
Space requirement

Time Complexity Is good

Bidirectional

Search

Problem: how do we search backwards from
goal??

predecessor of node n = all nodes that have n
as successor

this may not always be easy to compute!

If several goal states, apply predecessor
function to them just as we applied successor
(only works well if goals are explicitly known;
may be difficult if goals only characterized
implicitly).

for bidirectional search to work well, there
must be an efficient way to check whether a
given node belongs to the other search tree.

select a given search algorithm for each half.

Bidirectional Search

« Completeness: Yes,

* Time complexity: 2*O(b42) = O(b 92)
« Space complexity: O(b ™?)

« Optimality: Yes

 To avoid one by one comparison, we need a hash
table of size o m?)
« |f hash table is used, the cost of comparison is O(1)

Comparison Uninformed Search Strategies

Ciitition Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete? Yest Yesa:? No No Yes” Yesa:d
. o) O™ /&) op™) O O(b%) O(b?/2)
Space O(b?) OB+1C /ey O(bm) O(be) O(bd) O(b?/2)
Optimal? Yes® Yes No No Yes© Yest:d

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor: d is the depth
of the shallowest solution; m is the maximum depth of the search tree: [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; * complete if step costs > ¢ for
positive €: © optimal if step costs are all identical; ¢ if both directions use breadth-first search.

Unit 2

Knowledge Based Agent

» Central Component of Knowledge Base Agent is
Knowledge Base

» A knowledge base is a set of sentences.

»Each sentence is expressed in a language called a
knowledge representation language.

»TELL - Add new sentences to the knowledge base
» ASK - Query what is known.

»The agent maintains a knowledge base, KB, which
may initially contain some background knowledge.

Examples of sentences
The moon is made of green cheese
If Ais true then B is true
Ais false
All humans are mortal
Confucius is a human

Knowledge Based Agent

Each time the agent program is called, it
does three things.

»TELLs the knowledge base what it perceives.

»ASKs the knowledge base what action it should perform.
»The agent program TELLs the knowledge base which
action was chosen, and the agent executes the action.

» MAKE-PERCEPT-SENTENCE constructs a sentence asserting that
the agent perceived the given percept at the given time.
»MAKE-ACTION-QUERY constructs a sentence that asks what action
should be done at the current time.

»MAKE-ACTION-SENTENCE constructs a sentence asserting that the
chosen action was executed.

Knowledge Based Agent Algorithm

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
{, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action — ASK(KB, MAKE-ACTION-QUERY({))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action

Figure7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

Architecture of a knowledge-based agent

Knowledge Level.
The most abstract level: describe agent by saying what it knows.
Example: A taxi agent might know that the Golden Gate Bridge
connects San Francisco with the Marin County.
Logical Level.
The level at which the knowledge is encoded into sentences.
Example: Links(GoldenGateBridge, SanFrancisco, MarinCounty).
Implementation Level.
The physical representation of the sentences in the logical level.
Example: ‘' (links goldengatebridge sanfrancisco
marincounty)

»The Inference eng IN€ derives new sentences from the input
and KB
»The inference mechanism depends on representation in KB
»The agent operates as follows:
1. It receives percepts from environment
2. It computes what action it should perform (by IE and KB)
3. It performs the chosen action (some actions are simply
inserting inferred new facts into KB).

Input from Inference Output
environment Engine (actions)
1 l<_ e Learning
(KB update)
Knowledge
Base

The Wumpus World environment

»The Wumpus computer game
»The agent explores a cave consisting of rooms connected by
passageways.

>Lurking somewhere in the cave is the WWum PUS, a

beast that eats any agent that enters its room.

»Some rooms contain bottomless pits that trap any agent that
wanders into the room.

»Occasionally, there is a heap of gold in a room.

»The goal is:

To collect the gold and exit the world without
being eaten

Agent in a Wumpus world: Percepts

The agent perceives
a stench in the square containing the wumpus and in the
adjacent squares (not diagonally)
a breeze in the squares adjacent to a pit
a glitter in the square where the gold is
a bump, if it walks into a wall
a woeful scream everywhere in the cave, if the wumpus is
killed

The percepts will be given as a five-symbol list:

If there is a stench, and a breeze, but
no glitter, no bump, and no scream, the
percept is

[Stench, Breeze, None, None, None]
The agent can not perceive its own location.

The actions of the agent in Wumpus game are:

go forward

turn right 90 degrees

turn left 90 degrees

grab means pick up an object that is in the same square as the agent

shoot means fire an arrow in a straight line in the direction the agent is looking.

The arrow continues until it either hits
and kills the wumpus or hits the wall.
The agent has only one arrow.

Only the first shot has any effect.

climb is used to leave the cave.

Only effective in start field.

die, if the agent enters a square with a pit or a live wumpus.

(No take-backs!)

The agent’s goal

The agent’s goal is to find the gold and
bring it back to the start as quickly as
possible, without getting killed.
1000 points reward for climbing out of
the cave with the gold
1 point deducted for every action taken
10000 points penalty for getting killed

Wumpus World description

Performance measure gold +1000, death -1000

-1 per step, -10 for using the arrow Environment

Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy Glitter iff
gold is in the same square Shooting Kills . | sEsEE ==
wumpus if you are facing it —

The wumpus kills you if in the same square = e dl - =
Shooting uses up the only arrow — ——

Grabbing picks up gold if in same square s o=
Releasing drops the gold in same square
ActuatorsLeft turn, Right turn, Forward,
Grab,Release,Shoot,Climb

SensorsBreeze,Glitter,Stench,Bump, Scream

<~ Breeze — < Breeze —
e e

PIT

START

The Wumpus agent’s first step

T4 24 34 a4

13 23 33 43

i2 22 32 42
oK

1 2.1 31 41
oK 0K

(@)

= Agent
B =Breeze
G = Glitter, Gold
OK = Safe square

P =PFit

S =Stench
vV = Visited
W = Wumpus

T4 74 34 a4
13 23 33 43
i2 22 32 42
P?
oK
11 zwli ERT EX
v B
oK oK

(b)

Later

T4 74 34 a4
T3, |23 33 43
12 22 32 42
s
oK OK
11 21 o 31 5 |+
v v
OK oK

(@)

= Agent
B =Breeze
G = Glitter, Gold
OK = Safe square

P =Pi

S = Stench
VvV = Visited
W = Wumpus

T4 74 34 1z
p?
3wt 2.3 33 pp |43
S G
B
12 22 32 12
s
v v
oK 0K
11 21 o 31, |4
v v
OK oK

(b

Exploring a wumpus world

oK

oK

oK

14/64

Exploring a wumpus world

[>]

—_t

[>]

15/64

Exploring a wumpus world

P?

B OK P?
[A]
A
| oK OK

[>]

16/64

Exploring a wumpus world

P?

[>]

===
o
~
w
(o]
A

[>]
|
[>]

17/64

Exploring a wumpus world

P?

[>]

===
o
~
w
(o]
A

B
|

>

=

18/64

Exploring a wumpus world

P?

B OK

m | o
Al A
|‘|’OKS |0K

19/64

Exploring a wumpus world

P? OK

OK

[»]
>y

===
o
~
w

B
|

>

=

20/64

Exploring a wumpus world

PP? OK

B OK BGS OK
7| o em
A| A

i‘|’0KS iOK
a—-a | W

21/64

Other tight spots

P?
Breeze in (1,2) and (2,1)
B OK 7 = no safe actions

IEI P?

Al Assuming pits uniformly distributed,

I%OK B EOK o (2,2) has pit w/ prob 0.86, vs. 0.31

yy il 2
Smellin (1,1) = cannot move Can
use a strategy ofcoercion:
shoot straight ahead
s wumpus was there = dead =

safe

E‘ wumpus wasn’t there = safe

22/64

Logic

» Knowledge bases consist of sentences.

» These sentences SYNTAX are expressed according to the syntax of the
representation language, which specifies all the sentences that are well formed.

» The notion of syntax is clear enough in ordinary arithmetic: “x + y = 4” is a well-
formed sentence, whereas “x4y+ =" is not.

» Logics are formal languages for representing information such that conclusions
can be drawn.

» Syntax defines the sentences in the language .

» Semantics define the “meaning” of sentences

i.e., define truth of a sentence in a world

E.g., the language of arithmetic

X+ 2 2>yisasentence; x2 +y>isnotasentence

X+ 2 > yis true iff the number x + 2 is no less than the number y

x+22yistrueinaworldwherex=7,y=1

x+ 2 2>yisfalse in aworld where x=0, y =6

Entaillment

»The possible models are just all possible assignments of real numbers to the
variables x and y
»Each such assignment fixes the truth of any sentence of arithmetic whose
variables are x and y.
> |f a sentence a is true in model m, we say that m satisfies a or sometimes
m is a model of a.
»The notation M(a) to mean the set of all models of a
»Entailment means that one thing follows from another:
»>KB |F a
»Knowledge base KB entails sentencea

if and only if
o is true in all worlds where K B is true
E.g., the KB containing “the Giants won” and “the Reds won” entails “Either
the Giants won or the Reds won”
E.g.,x +ty=4entails 4=x +y
Entailment is a relationship between sentences (i.e., syntax) that is based
on semantics

Models

»Given a logical sentence, when is its truth uniquely defined in a world?
»Logicians typically think in terms of models, which are formally
structured worlds.

(e.g., full abstract description of a world, configuration of all variables,
world state)

We say m is a model of a sentence « if « is true in m

M (e) is the set of all models of «

Then KB |= « if and only if M (KB) €M ()

E.g. KB = Giants won and Reds won
o = Giantswon

Entailment in the wumpus world

» Situation after detecting nothing in [1,1], moving
right, breeze in [2,1]

»Consider possible models for ?s assuming only

pits 9 9
| ?
» 3 Boolean choices = 8 possible models (Al [2] H

26/64

Wumpus models

| @
® 1@
‘ e
e e
=~ @ | @@
=@
2 3

27164

Wumpus models

oo
D
~e
[@[@
=F
@

KB =wumpus-world rules +observations

28/64

Wumpus models

@
o
@
~®
00
FRTE
o

KB =wumpus-world rules +observations
a1 =“[1,2] is safe”, KB |=a1, proved bymodelchecking
29/64

Wumpus models

KB =wumpus-world rules +observations
ar =“[2,2] is safe”, KB |Fa»
21/64

Representation, Reasoning, and Logic

The object of knowledge representation is to express knowledge in a
computer-tractable form, so that agents can perform well.

A knowledge representation language is defined by:

Its syntax, which defines all possible sequences of symbols
that constitute sentences of the language.

Examples: Sentences in a book, bit patterns in computer memory.
Its semantics, which determines the facts in the world to
which the sentences refer.

Each sentence makes a claim about the world.

An agent is said to believe a sentence about the world.

The connection between
sentences and facts

Sentences - = Sentence
Entails
Representation g‘ g‘
8| B
3 2
World 2 @
Facts = Fact
Follows

»Semantics maps sentences in logic to facts in the world.
»The property of one fact following from another is mirrored
by the property of one sentence being entailed by another.

Logic as a Knowledge-Representation
(KR) language

Multi-valued Modal Temporal Non-moqotonic
Logic . Logic
igher Order
Probabilistic

Logic

Fuzzy Propositional Logic

Logic

Inference

Inference in the general sense means:

Given some pieces of information (prior, observed
variabes, knowledge base) what is the implication (the implied
information, the posterior) on other things (non-observed variables,
sentence)

KB € a« = sentence « can be derived from KB by procedure |

Eg: Consequences of KB are a haystack; « is a needle.

Entailment = needle in haystack;

Inference = finding it

Soundness: iis sound if whenever KB € ¢, it is also true that KB |= «
Completeness: i is complete if whenever KB |= ¢, it is also true that KB
€a

Preview: we will define a logic (first-order logic) which is expressive enough to say
almost anything of interest, and for which there exists a sound and complete

inference procedure. That is, the procedure will answer any question whose
answer follows from what is known by the KB. 34/64

Summary

»Intelligent agents need knowledge about the world for making good
decisions.

»The knowledge of an agent is stored in a knowledge base in the form of
sentences in a knowledge representation language.

» A knowledge-based agent needs a knowledge base and an inference
mechanism.

v'It operates by storing sentences in its knowledge base,
v Inferring new sentences with the inference mechanism,

v'and using them to deduce which actions to take.

»>Arepresentation language is defined by its syntax and semantics, which
specify the structure of sentences and how they relate to the facts of the

world.
»The interpretation of a sentence is the fact to which it refers.

vIf this fact is part of the actual world, then the sentence is
true.

Summary

» The process of deriving new sentences from old
one is called inference.

v'Sound inference processes derives true conclusions
given true premises.

v'Complete inference processes derive all true
conclusions from a set of premises.
»A valid sentence is true in all worlds under all
interpretations.
»|f an implication sentence can be shown to be
valid, then - given its premise - its consequent can
be derived.

PROPOSITIONAL
LOGIC

Propositional logic (PL)

»A simple language useful for showing key ideas and definitions
»User defines a set of propositional symbols, like P and Q.
»User defines the semantics of each of these symbols, e.g.:

v'P means "It is hot"

v'Q means "It is humid"

v'R means "It is raining"
»A sentence (aka formula, well-formed formula, wff) defined as:

v'A symbol

YIf S is a sentence, then ~S is a sentence (e.g., "not”)

v'If S is a sentence, then so is (S)

vIf S and T are sentences, then (Sv T), (S~ T),(S=>T), and (S <=>
T) are sentences (e.g., "or," "and," "implies," and "if and only if”)

v'A finite number of applications of the above

Propositional logic: Syntax

»Propositional logic is the simplest logic—illustrates basic
ideas
»The proposition symbols P4, P, etc are sentences

»>If S is a sentence, S is a sentence (negation)

»If S; and S, are sentences, S; /1 S; is a sentence (conjunction)
»If S1and S, are sentences, S: IV Sy is a sentence (disjunction)
»If S; and S, are sentences, S; = S, is a sentence (implication)
»If S1and S, are sentences, S; < Sy is a sentence (biconditional)

39/64

Propositional logic:

»Complex sentences are constructed from simpler sentences, using
parentheses and logical COMPLEX SENTENCES connectives.

»There are five connectives in common use: LOGICAL CONNECTIVES
»NEGATION = (not): A sentence such as -W1,3 is called the negation of
W1,3. A literal is either an atomic sentence (a positive literal) or a negated
atomic sentence (a negative literal).

»CONJUNCTION A (and): A sentence whose main connective is A, such
as W1,3 A P3,1, is called a conjunction; its parts are the conjuncts. (The A
looks like an “A” for “And.”)

»DISJUNCTION V (or): A sentence using V, such as (W1,3AP3,1)VW2,2,
is a disjunction of the disjuncts (W1,3 A P3,1) and W2,2.

»IMPLICATION = (implies): A sentence such as (W1,3AP3,1) = -W2,2
is called an implication (or conditional). Its premise or antecedent is
(W1,3 AP3,1), and its conclusion or consequent is -W2,2. Implications
are also known as rules or if—then statements.

>»BICONDITIONAL & (if and only if): The sentence W1,3 & -W2,2 is a
biconditional.

Examples of PL sentences

(P~ Q) =>R

“If it is hot and humid, then it is raining”
Q=>P

“If it is humid, then it is hot”
Q

“It is humid.”
A better way:

Ho = “Itis hot”
Hu = “It is humid”
R = “It is raining”

Propositional logic: Syntax grammar

Sentence — AtomicSentence | ComplezSentence
AtomicSentence — True| False | P| Q| R| ...
ComplexSentence — (Sentence)| [Sentence |
- Sentence

Sentence N\ Sentence

|

|

| Sentence V Sentence

| Sentence = Sentence
|

Sentence <> Sentence

OPERATOR PRECEDENCE : -, A,V,=,&

Figure 7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic,
along with operator precedences, from highest to lowest.

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
Eg. Pi2 P22 Psa

True True

false

(With these symbols, 8 possible models, can be
enumerated automatically.)

Rules for evaluating truth with respect to a model m:

=S s true iff
S1 A Sy s true iff
S1 VvV Sy is true iff
S1=S2 s true iff
i.e., Isfalse iff
S, S, istrueiff

S
S1
S1
S1
S1

51:)52

is false

is true and Sy
is true or Sz
is false or Sz
is true and Sy

istrueand S, =S,

is true
is true
is true
is false

is true

Simple recursive process evaluates an arbitrary sentence,
e.9.,7P121 (P22 VP31) =true A (false vtrue) =true Atrue =true

» Sentences have a Truth value with respect to a model
» For example: m = {P; > = false, P> = false, P> 1 = True}

» Or:m= {P|2 = false, Pz'z = true, Pz.‘ — false}
» Py, is just a symbol. It can mean anything.
» Truth value is computed recursively according to...

Truth tables for connectives

P Q =P PAQ PvQ P=Q P=Q
false | false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

45/64

Wumpus: Inference
Starting State

OK

[None,None,None,None,None]

-Pis true if P is false in m (negation)
P A Qs true iff both P and Q are true in m (conjunction)
P v Qis true iff either P or Q are true in m (disjunction)

P = Qis true kmless P is true and Q is false (implication)*

P < Qis true iff P and Q are both true or both false’®
(biconditional)

*if P is true | claim that Q is true. Otherwise no claim
5if P is true | claim that Q is true, if P is false | claim that Q is false.
otherwise no claim

Semantics
Evaluating

in the model m = {P1 2= false, P22 = false, Pz“' = FUG}

Evaluate ~Pi2 A P22 V Ps 1

Evaluate it for m = {P; » = true, P, = true, P, 1 = false}

A Simple Knowledge Base

»>Px,y is true if there is a pit in [X, y].
»WX,y is true if there is a wumpus in [X,
y], dead or alive.

»BX,y Is true if the agent perceives a
breeze in [X, y].

»SX,y Is true if the agent perceives a
stench in [X, y].

A Simple KB
Definitions

» Py istrue if there’s a pit in [x, y]
» W, is true if there is a Wumpus in [x, y]

» By, is true if the agent perceives a breeze in [x, y]
» Syy is true if the agent perceives a stench in [x, y]

Wumpus world sentences

»>Let P;;be true if there is a pitin [i, j].
»>Let B;; be true if there is a breeze in [i, |].

_'Pl,l
_'Bl,l

BZ,l

»“Pits cause breezes in adjacent squares”

51/64

Wumpus world sentences

Let Pi;be true if there is a pitin [i, j].
Let Bi;be true if there is a breeze in [i, j].

-P1,1
-B1,1
B21

“Pits cause breezes in adjacent squares”

Bii o (P12 VP21)
Bo1 o (Pl,l VP2,2 VPS,l)

“A square is breezy if and only if there is an adjacent pit”
52/64

A Simple Knowledge Base

»There is no pitin [1,1]:
R1:-P1,1
»A square is breezy if and only if there is a pitin a
neighboring square.
»This has to be stated for each square; for now, we include
just the relevant squares:
R2:Bl,1&e (P1,2VvP21)
R3:B2,1& (P1,1v P22V P31)
»The preceding sentences are true in all wumpus worlds.
»Now we include the breeze percepts for the first two
squares visited in the specific world the agent is in.
R4:-B1,1
R5:B2,1

A simple KB

Rules

For the Wumpus world in general.
> R1 > -'P1,1
» Ry: By & (P12V Pay)
» R3: By & (P1y VP2V Pay)

Now, after visiting [1,1]; [1,2] and [2,1]

» Ry:-By
» Rs: By

KB=RiAR:ARs ARy ARs

Inference
Goal

| want to find whether my KB says there’s no pit in [1,2]

That is, does KB |= —Py» ?

We say that —P; > is a sentence o
Main goal: decide whether KB = a

« can be a much more complex query

Inference
Simple Method

» enumerate the models
» for each model, check that:

» ifitis true in a is has to be true in KB
L3

In the Wumpus world: 7 relevant symbols:

Bi,1,B821,P11,P12,P2,1,P22, P31
27 = 128 models. Only 3 are true

Inference
All Possible Models

P | Py | Py
false | false | false
[dac falae | jalsc

faln [abe]alac
Jalse | false | false |
false | false | true
fa.lu']’abe true
false | true | false

F-ifEdi-2d

H H | H
true | true | true

Inference
TT-Entails

function TT-Entails(KB,q) //q is the guery in prop. logic
symbols=list of the proposition symbols inm KB and q
return TT-Check-All (KB,q,symbols, {})

function TT-Check-All (KB, g, symbols,model)
if isEmpty(symbols)
if PL-True (KB, model)
return PL-True (g, model)
else
return true // if KB is false, always return true
else do
P=First (symbols)
rest=Rest (symbols)
keturn (TT-Check-All(KB,qg,rest,model + {P=true)) AND
(TT-Check-All (KB, g, rest, model + {P=false})

function PL-True(sentence, model)
//returns true if sentence holds within the model

Inference
Model Checking Complexity

if KB and a contain n symbols in all:
Time complexity: O(2")
Space complexity: O(n) because it is depth first.

propositional entailment is co-NP complete (probably no easier
than NP-Complete)

Logical equivalence

Two sentences are logically equivalent iff true in same models:
o=pifandonlyifa|=pgand f|= a

(@nB) = (B 2a)commutativity of 2
(@ vB) = (B va)commutativity of v
((@aB)ay) = (a A(B 2y)) associativity of 4
(@ vB) vy) = (a v(B vy)) associativity of v
-(~ad) = a double-negation elimination
(@ =>B) = (=B =-a) contraposition
(@ =B) = (-a vp)implication elimination
(@ pB) = ((a=p) (B = a)) biconditional elimination
-(a AB) = (-~a v-B)De Morgan
-(a vB) = (-a A-B) De Morgan
@nBvy) = ((aapB)v(a »y)) distributivity of 4 over v

(@av@ay)

((@ vB) A (a vy)) distributivity of over A

Validity and satisfiability

> A sentence is valid if it is true in all models,

>e.g., true, AV-A,A=>A (AA(A=>B)) =B

»Validity is connected to inference via the Deduction Theorem:
»KB |= aif and only if (KB = «) is valid

» A sentence is satisfiable if it is true in some model

»e.g., R1 NR2 NR3 N R4 AR5 is satisfiable for three models

» A sentence is unsatisfiable if it is true in no models
»e.g.,AN-A

» Satisfiability is connected to inference via the following:

»KB |= a if and only if (KB A -a) is unsatisfiable

INFERENCE
AND THEOREM
PROVING

Inference
Logical Equivalences

(aAB) = (BAa) commutativity of A
(avpB) = (BVva) commutativity of V
((aAB)AY) = (aA(BA7)) associativity of A
((@vB)Vva) = (aV(BVe) associativity of V
=(-a) = a double-negation elimination
(@ = B) = (-f = —a) contraposition
(@ = B) = (~aV p) implication elimination
(@ & B) = ((a = B)A(B = a)) biconditional elimination
“(aAB) = (~aV-pB) DeMorgan
~(aVpB) = (~aA-f) De Morgan
(@aA(BV7) = ((@aAB)V(aA7)) distributivity of A over V
(@aV(BA7Y) = ((aVB)A(aVy)) distributivity of V over A

%There are many more, but these are the main ones

Inference By [heorem Proving

Concepts

» Logical Equivalence: a=fiffa=fandf Ea

» Validity: A tautology: it is true in all models. e.g. PV -P
» Deduction: a =g iffa=

» Satisfiability: if some model makes it true.

Inference By [heorem Proving

Proofs

Modus Ponens

a=8 a
B

If a implies § and a is true, then 3 is true

And Elimination

Inference by [heorem Proving

Proofs

Other rules can also be inference rules

q4=>ﬁ

(@=B)A(B=a)

(@=B)A(B=a)
a < f

Inference
In our Wumpus World: Is there a pit in 1,27

OK
1.1 llm 31 » 41
v 1]
OK OK
» R1 : HP1'1

» Ry:Byy <= (P12V Pyy)

» Ry: By <= (P11 VP2V Pay)
» Ry: By

» Rs: By

Inference
Applied to the Wumpus World

We have KB = Ry A Ry A Rs A Ry A Rs. We want to prove -P; »

» Rg:(Byy = (P12VPa))A((P12V P2y) = Byy) by
bicond. elim A,

» Ry :((P12V P2;1) = By,1) by And-Elimination to Rg
» Rg: (=B = (P12 V P,,)) by contrapositives

> Rg:-'(P1'2VP2'1)bYMOdUSPOﬂQnswm1&8ndR4
» Rio: P12 A-Pa

That is: Neither [1,2] nor [2,1] contains a pit.

» Intial State: The initial Knowledge Base

» Actions: The set of all the inference rules applied to all
sentences that match top half

» Result: Add sentence in the bottom half of the inference
rule

» Goal: The goal is a state that contains sentence we want
to prove

Inference

By Resolution

Let's say agent retumsto [1 1] from [2,1] and goes to [1,2]
ﬂ gt

m';gl

» Ry :-By
> R|2:B12 <= (P1'1VP2'2VP1.3)

Inference
By Resolution

We can continue using same process as earlier.
» Ry3: —P,2 Contrapositive Ry and AND elimination
» Ry4: —~P; 3 Same as above.
» Rys: Py V P2V P34 bi-conditional elem. R; and modus

ponens As
And the literal -~P, 2 in Ry3 resolves with P2 in Ays to give the
resolvent
» Rig: P11V Py
more generally...
AvB,-AvC
BvC

Anything else that resolves?

Resolution
Conjunctive Normal Form (CNF)

Every sentence in propositional logic can be expressed as
conjunctions of disjunctions of literals.

eg. (AvVB)A(-CVDV-E)A...

Biy < (Pj2V P241)in CNF?

» Eliminate <= replacing a <= A with (a = 8)A (8 = a)

» (By1 = (P12VP21))A((P12V P2y) = Byy)

» Eliminate = by replacing a = 3 with ~a v 3

» (B 1 VP2V P) A(~(Ps2V Pzy)VBy,)

» Symbol - should appear next to each literal: DeMorgan
~(avp)=-aA-Band ~(aAB)=-aV -

» (B 1 VP2V Py) A((-P12A—P2y) V By)

» Distribute v over A and flatten

» (<B11VPi2VP)A(-P12V Byg) A(-P21 V By1)

RESOLUTION

Resolution

An algorithm

Algorithm works using proof by contradiction.
To show KB = a we show that KB A —a is not satisfiable
Apply resolution to KB A —~a in CNF

and Resolve pairs with complementary literals
hv.. Vi, mVv..vm,
hV..ldi-1V I;+1... VikVmV..V mj_q V Misq... vV mp

it |; and m; are complimentary lterals
and add new clauses

until
» there are no new clauses to be added
» two clauses resolve to the empty class, which means
KB = a

Resolution
An algorithm

function PL-Resolution(KB,q)
// KB, the knowledge base. a sentence in prop logic.
// g, the query, a sentence in prop logic
clauses= contra(KB,q) //CNF representation of KBA-q
new = ()}
do
for each pair of clauses Ci,Cj in clauses
resolvents=PL-Resolve (Ci,Cj)
if resolvents contains the empty clause
return true
new = new + resolvents
if new is subset of clauses
return false
clauses = clauses + new

&

NN

Resolution
Algorithm

Say thg agent is in [1,1], no breeze, so no plts can be in there.
KB= R AR

KB= (Byy <= (P2 VPp1)) A8y,
KBA~a= (~Ppy VBi1)A(~By 1 VP12V P) A(~Pr2aVBig)A(-B 1) A (P 2)

AA

~B,VP,VB,

FORWARD
CHAINING &
BACKWARD

CHAINING

Inference

Forward and Backward Chaining

Horn Form

KB conjunction of Horn clauses

Horn Clause (at most one literal is Positive’)
For example: (-P v -QV V) is a Horn Clause.
sois (—Pv-W). But, (-PVv QV V)is not.
Definite Clauses: exactly ore literal is positive.

y ©"wvw v

v

Horn clauses can be re-written as implications
» proposition symbol (fact) or
» conjunction of symbols (body or premise) => symbol (head)
» Example: (-CV -BV A) becomes (CA B = A)

Modus ponens for Horn KB:

aj...anqA...ap=>

B

"Not negated

Forward chaining

Idea: fire any rule whose
premises are satisfied in the
KB, add its conclusion to
the KB, until query is found.

P=Q
LAM=>P

BAL=M
AAP =L
AAB=L
A

B

Forward chaining example

80/64

Forward chaining example

81/64

Forward chaining example

82/64

Forward chaining example

83/64

Forward chaining example

84/64

Forward chaining example

85/64

Forward chaining example

86/64

Forward chaining example

87/64

Inference

Forward Chaining

function PL-FC-Entails (KB, q)
// KB, the knowledge base, a prop. sentence

// q, the query, a prop. sentence
count = a table //count[c] is num of symbols in C’'S premise

inferred = a table //inferred(s] initially false for all s
agenda = a queue of symbols //Init w/symbols that are true

while agenda is not empty
‘p = pop (agenda)
if p=g then return true
if inferred(p)]=false
inferred(p]=true
for each clause c in KB that contains p in premise
decrement count|c]

if count|c]=0
add c.conclusion to agenda

return false

Backward chaining

»ldea: work backwards from the query g: to
prove g by BC, check if g is known already, or
prove by BC all premises of some rule
concluding g

» Avoid loops: check if new subgoal is already
on the goal stack
» Avoid repeated work: check if new subgoal

has already been proved true, or has already
failed

Inference
Backward Chaining (B.C.)

Work backwards from query q

» To prove g by B.C.
» check if g is known or
» prove by B.C. all premises of some rule concluding g

Avoid Loops: Check if new subgoal is already in goal stack
Avoid repeat work: Check if new subgoal

» has already been proved true or
» has already failed

Backward chaining example

91/64

Backward chaining example

92/64

Backward chaining example

93/64

Backward chaining example

94/64

Backward chaining example

95/64

Backward chaining example

96/64

Backward chaining example

97/64

Backward chaining example

98/64

Backward chaining example

99/64

Backward chaining example

100/6

Forward and Backward Chaining
Discussion

» FC is data driven. E.g. object recognition, routine decision
» FC may do a lot of work irrelevant to the goal

» BC is goal driven. Appropriate for problem solving. l.e.
Where is home? What's the result of equation x?

» Complexity of BC can be much less than linear size of KB

Summary

Logical agents applyinferenceto aknowledge base to derive new
information and make decisions

Basic concepts of logic:

—syntax: formal structure ofsentences

—semantics:truthof sentences wrtmodels

—entailment: necessary truth of one sentence given another

—inference: deriving sentences from other sentences

—soundness: derivations produce only entailed sentences
—completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

Dictionary: logic in general

alogic: a language, elements « aresentences, (grammar example:
slide 34)

model m: a world/state description that allows us to evaluate

a(m) € {true, false} uniquely for any sentence

o, M () = {m: a(m) = true}

entailment o |= f: M (o) €M (), Vin: a(m) = p(m)”

(Folgerung)

equivalence a = S iff (o |= pand S |= a)

KB: a set of sentences

inferenceprocedure i can infer « from KB: KB €« soundnessof i: KB
€ o implies KB |= « (Korrektheit) completenessof i: KB |= «
implies KB € «

Dictionary: propositional logic

conjunction: o 4 g,disjunction: « / 4,negation: -«

implication: o = f = —a V f,biconditional:

aeBE(@=2p) 1B =>a)

Note: |= and = are statements about sentences in a logic; = and <
are symbols in the grammar of propositional logic

o valid: true for any model, e.g.: KB |= « iff [[KB = «) is valid]
(allgemeingu™ Itig)

o unsatisfiable: true for no model, e.g.: KB |= « iff [[KB 2 —a) is
unsatisfiable]

literal: A or —A,clause: disjunction of literals,CNF: conjunction of
clauses

Horn clause: symbol | (conjunction of symbols = symbol),Horn form:
conjunction of Horn clauses

Modus Ponensrule coméplete for Horn KBs 9u-dn:

Resolutionrule: complete for propositional logic in CNF, Iet A= —m;
Aq V- VAK maV---VMp
All/---VA,—ll/Aull/---l/Ak\/I’Thl/---I/m,—ll/mpll/---\/mn

Effective Propositional Model
Checking

»Two families of efficient algorithms for propositional
inference based on model checking:

»Mainly used for checking satisfiability
» Complete Backtracking Search Algorithms

DPLL Algorithm (Davis, Putnam, Logemann, Loveland)
» Incomplete Local Search Algorithms

WalkSAT Algorithm

Conversion to CNF
B, & (P1,2 Vv PZ,l)

Eliminate <, replacing o < § with (¢ = R)A(R = «).
(B = (P VP) A(P, v Pyy) = By y)

Eliminate =, replacing a = B with — a v RB.
(—'B1,1 v F'1,2 Vv Pz,1) N (—'(Pl,z Vv P2,1) \% B1,1)

Move — inwards using de Morgan's rules and double-negation:
(—'B1,1V P,V P2,1) A ((_'Pl,Z/\ _'P2,1) \% B1,1)

Apply distributivity law (A over v) and flatten:
(_‘Bl,l VP,V P2,1) N (—'P1,2V B1,1) A (_'P2,1 Vv B1,1)

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is
satisfiable. This is just backtracking search for a CSP.

Improvements:
1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A v —B), (—B v —C), (C v A), A and B are pure, C
isimpure.

Make a pure symbol literal true. (if there is a model for S, then making a
pure symbol true is also a model).

3 Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

Note: literals can become a pure symbol or a (AvTrug) n(-Av B)
unit clause when other literals obtain truth values. e.g. A = pdre

The DPLL algorithm

Determine if an input propositional logic sentence (in
CNF) is satisfiable by assigning values to variables.

1. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all
clauses.

e.g., In the three clauses (A v —B), (=B v —C), (CVv A), A
and B are pure, Cis impure.

Assign a pure symbol so that their literals are true.

2. Unit clause heuristic

Unit clause: only one literal in the clause or only one
literal which has not yet received a value. The only
literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic
clauses +— the set of clauses in the CNF representation of s

symbols +—a list of the proposition symbols in 3
return DPLL(clauses, symbols, |])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value + FIND-PURE-SYMBOL(symbols, elauses, model)

P« Fi1rsT(symbols); rest «— REST(symbols)
return DPLL(clauses, rest, [P = true|model]) or
DPLL(clauses, rest, [P = false|model|)

The WalkSAT algorithm

»Incomplete, local search algorithm.

> Evaluation function: The min-conflict
heuristic of minimizing the number of
unsatisfied clauses.

» Steps are taken in the space of complete
assignments, flipping the truth value of one
variable at a time.

»Balance between greediness and
randomness.

> To avoid local minima

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model + a random assignment of true/ false to the symbols in clauses
for i = 1to maz-flips do

if model satisfies clauses then return model

clause + a randomly selected clause from clauses that is false in model

with probability pflip the value in model of a randomly selected symbol

from elause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Hard satisfiability problems

Consider random 3-CNF sentences. e.g.,

(-Dv-BvC)A(Bv-Av-C)A(-Cv -BVE)A(Ev-DvB)A(B
VEV—|C)

m = number of clauses

n = number of symbols

Hard problems seem to cluster near
m/n = 4.3 (critical point)

Hard satisfiability problems

0.8

i
*ﬁ

%

0.6

e

04

Pr(satisfiable)

0] 1 2 3 4 3 6 7

Clause/symbol ratio m/n

Hard satisfiability problems

2000 T T T

T _ T T
1800 | DPLL -+ |I+ -
1600 | WalkSAT PHF) |
1400 | 'x,
1200 |- |‘|| \
1000 |- f
800 “, 4

Runtime

200
0 e .?.---7'--_-9?/"-' 1 1

.
|
0 1 2 3 4 5 6

Clause/symbol ratio m/n

Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

Inference-based agents in the wumpus
world

A wumpus-world agent using propositional logic:

—|P1’1

—|W1'1

Bx,y = (Px,y+1 Vv Px,y-l Vv I:’x+1,y Vv Px-l,y)
Sx,y < (Wx,y+1 Vv Wx,y-l v Wx+1,y vV Wx—l,y)
Wi vWi, v vW,,

—|W1'1 V —|W1'2

—|W1’1 \Y4 —|W1’3

= 64 distinct proposition symbols, 155 sentences

function PL-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
x, y, orientation, the agent’s position (init. [1,1]) and orient. (init. right)
vigited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update x,y,orientation, visited based on action

if stench then TELL(KB, S,,) else TELL(KB, - S,)

if breeze then TELL(KB. B, ,) else TELL(KB, — B.)

if glitter then action + grab

else if plan is nonempty then action «— Pop(plan)

else if for some fringe square [i,j], ASK(KB,(— Pij A — Wij))is true or

for some fringe square [ij], ASK(KB, (Fi; v W;;)) is false then do

plan « A*-GRAPH-SEARCH(ROUTE-PB([z.y], orientation, [4]] visited))
action + P OP(plan)

else action + a randomly chosen move

return action

Expressiveness limitation of
propositional logic

» KB contains "physics" sentences for
every single square

»For every time t and every location [X,y],
»L,, A FacingRight' A Forward' = L,,, ,

»Rapid proliferation of clauses

Maintaining Location and
Orientation

» KB contains “physics” sentences for every single square

»PL-Wumpus cheats — it keeps x,y & direction variables
outside the KB.

»To keep them in the KB we would need propositional
statement for every location. Also need to add time
denotation to symbols

> L', A FacingRight* A Forward*= L, |

» FacingRight t A TurnLeftt = FacingRight **1

»We need these statements in the initial KB for every
location and for every time.

»This is tens of thousands of statements for time steps of
[0,100]

Circuit-based Agents

> Reflex agent with State.

»Formed of logical gates and registers (stores a
value)

»Inputs are registers holding current percepts
»Outputs are registers giving the action to take

» At each time step, inputs are set and signals
propagate through the circuit

»Handles time ‘more satisfactorily’ than
previous agent. No need for a hundreds of rules
encoding states

Example Circuit

Glitter! = Grab

—Seream® A Alive®™" = Alive®
Breeze
Stench
Clitter ’I (}'-me'}l

Bump

ENRERE

Seream

Location Circuit

LY, = (L'7' A (=Forward ™" v Bump'))

Vo (LG A (F Down'™t A Forward 1))

v (LS A (FLeft™ A Forward ™"

Seream

Need a similar circuit for each location register.

FDown

Unknown Information in Circuits

>Propositions Alive and L',,; , are always known

>What about B, , ? Unknown at the beginning of Wumpus world
simulation. This is OK in a propositional KB, but not OK in a circuit.

> Use two bits K(B, ,) and K(—B, ,)

> If both are false we know nothing! One of them is set by visiting
the square.

>K(By,)t & K(By,)t1V (Lt , * Breeze !)

»Pitin 4,4?

3 K(— Py g)t & K(— By)tV K(— By 5)t

>K(P4,4)t a4 (K(Ba,4)t A K(_‘ I32,4)“\ K(_‘ P3,3)t)

>V (K(B4,3)t M K(= I34,2)“\ K(= P3,3)t)

»Hairy Circuits, but still only a constant number of gates

» Note: Assume that Pits cannot be close enough together such
that you can build a counter example to K(B, ,)* above

Example of 2-bit K(x) usage

K(By3)! < K(By2)~t v (Li, A Breeze')
K(=B;5)! = K(=By,)"™ v (L, , A =Breeze')

I Seream |

TurnLeft

Avoid cyclic circuits

So far all ‘feedback’ loops have a delay. Why? Otherwise the circuit
would go from being acyclic to cyclic

Physical cyclic circuits do not work and/or are unstable.

K(Bsa)' © K(Bya)™t V (LY 4~ Breeze) V K(Pz,4) 'V
K(Psa) !
K(P5,) tand K(P, ;) * depend on breeziness in adjacent pits, and pits

depend on more adjacent breeziness. The circuit would contain
cycles

These statements are not wrong, just not representable in a boolean
circuit

Thus the corrected acyclic (using direct observation) version is
incomplete. The Circuit-based agent might know less than the
corresponding inference based agent at that time

Example: B, ; => B, ,. This is OK for IBA, but not for CBA
A complete circuit can be built, but it would be much more complex

IBA vs. CBA

Conciseness: Neither deals with time very well. Both are very
verbose in their own way. Adding more complex objects will swamp
both types. Both are poorly suited to path-finding between safe
squares (PL-Wumpus uses A* search to get around this)

Computational Efficiency: Inference can take exponential time in the
number of symbols. Evaluating a circuit is linear in size/depth of
circuit. However in practice good inference algorithms are very quick

Completeness: The incompleteness of CBA is deeper than acyclicity.
For some environments a complete circuit must be exponentially
larger than the IBA’s KB to execute in linear time. CBAs also forgets
knowledge learned in previous times

Ease: Both agents can require lots and lots of work to build. Many
seemingly redundant statements or very large and ugly circuits.

Hybrid???

Summary

Logical agents apply inference to a knowledge base to derive new information
and make decisions

Basic concepts of logic:
syntax: formal structure of sentences
semantics: truth of sentences wrt models
entailment: necessary truth of one sentence given another
inference: deriving sentences from other sentences
soundness: derivations produce only entailed sentences
completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

Propositional logic lacks expressive power

Local Search Algorithms and Optimization
Problems

e Local search:
* Use single current state and move to neighboring states.

e |dea: start with an initial guess at a solution and incrementally improve
it until it is one

e Advantages:
« Use very little memory
« Find often reasonable solutions in large or infinite state spaces.

e Useful for pure optimization problems.
« Find or approximate best state according to some objective function

« Optimal if the space to be searched is convex

2/20/2021 MGIT-IT-HARINATH

Local search vs Systematic search

Systematic search

Local search

Solution

Path from initial state to the goal

Solution state itself

Method

Systematically trying different paths from an
initial state

Keeping a single or more "current” states and
trying to improve them

State space

Usually incremental

Complete configuration

Memory Usually very high Usually very little (constant)

Time Finding optimal solutions in small state spaces |Finding reasonable solutions in large or infinite
(continuous) state spaces

Scope Search Search & optimization problems

Understand Local Search

> State- Space Landscape
»Landscape
--Location(defined by state)
--Elevation(defined by heuristic function)
> If Elevation corresponds to
--Cost-Find Lowest Valley (Global Minimum)
--Objective Function-Find Highest Peak(Global Maximum)
» A Complete Local Search Algorithm always finds a Goal if one
exists, Optimal Solution always finds a Global Maximum/Minimum.

State- Space Landscape Features

bjective function _
e global maximum

shoulder

N

local maximum

“flat” local maximum

= State space
current
state

2/20/2021 MGIT-IT-HARINATH

Local Search Algorithms

» Hill Climbing Search
»Simulated Annealing Search
»Local Beam Search

» Genetic Algorithms

2/20/2021 MGIT-IT-HARINATH

Hill Climbing Search

» Local Search Algorithm

> Steepest-Ascent (Simply a Loop that Continuously moves in
direction of increasing value-UPHILL)

» Terminates when reaches Peak(No Neighbour has higher value)
»Does not maintain a search tree(only Current State)

»No Back Tracking

»Greedy Local Search(grabs good neighbour without thinking
other)

Hill-climbing search is greedy

7 Greedy local search: considering only one step ahead and
select the best successor state (steepest ascent)

Rapid progress toward a solution
Usually quite easy to improve a bad solution

Y
Optimal when starting in
one of these states

Hill Climbing - Algorithm

. Pick a random point in the search space

2. Consider all the neighbors of the current state

. Choose the neighbor with the best quality and move to that
state.

. Repeat 2 to 4 until all the neighboring states are of lower
quality.

. Return the current state as the solution state.

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor + a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current «— neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor; in this version, that
means the neighbor with the highest VALUE, but if a heuristic cost estimate h is used, we
would find the neighbor with the lowest h.

2/20/2021 MGIT-IT-HARINATH 9

Hill climbing example 1 (minimizing h)

6 oop £ 4 S hoop:OT

e

Q) A
NN
olools

s o33, Noop = 1]
T 1 2'/' 1] 2
d 7] o oop q7] 9§

A

Hill-climbing Example: n-queens

e Nn-queens problem: Put n queens onan n xn board with no two
gueens on the same row, column, or diagonal

e Good heuristic: h = number of pairs of queens that are attacking
each other

= =

h=3
(for illustration)

2/20/2021 MGIT-IT-HARINATH

Hill Climbing
L

Goal ;Node

2/20/2021 MGIT-IT-HARINATH 12

Hill Climbing
L

Goal ;Node

2/20/2021 MGIT-IT-HARINATH 13

Hill Climbing
Goal - Node

2/20/2021 MGIT-IT-HARINATH 14

Hill Climbing " Current.
Goal - Node —

Children

Dg o A1p4

__Children _
]
Do Auas

2/20/2021 MGIT-IT-HARINATH 15

Hill Climbing Bl
Goal - Node

Children

Dg g A104

2/20/2021 MGIT-IT-HARINATH 16

Hill Climbing Bl
Goal - Node

Children

Dg g A104

2/20/2021 MGIT-IT-HARINATH 17

Hill Climbing Bl
Goal - Node

Children

Dg g A104

2/20/2021 MGIT-IT-HARINATH 18

Hill Climbing Bl
Goal - Node

Children

Dg g A104

2/20/2021 MGIT-IT-HARINATH 19

Hill Climbing Bl
Goal - Node

Children

Dg g A104

£69 A4

2/20/2021 MGIT-IT-HARINATH 20

Hill Climbing Bl
Goal - Node

Children

Dg g A104

£69 A4

2/20/2021 MGIT-IT-HARINATH 21

Hill Climbing U
Goal - Node

Children

Dg g A104

£69 A4

2/20/2021 MGIT-IT-HARINATH 22

Hill Climbing U
Goal - Node

Children

Dg g A104

£69 A4

2/20/2021 MGIT-IT-HARINATH 23

Hill Climbing U
Goal - Node

Children

Dg g A104

£69 A4

2/20/2021 MGIT-IT-HARINATH 24

Hill Climbing U
Goal - Node

Children

Dg g A104

£69 A4

£330 Bsr

2/20/2021 MGIT-IT-HARINATH 25

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

HHHEEMMI

Children

Dg g A104

£69 A4

EIIIIII
N
N

26

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

HHHEEMMI
Ny X
S NE
SHE S
A\ N

Children

Dg g A104

27

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

HHHEEMMI
Ny X
S NE
SHE S
A\ N

Children

Dg g A104

28

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

HHHHEEMMI

Children

Dg g A104

Oy

IEIHIIII
SRS
N N

29

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

HHHHEEMMI
Ny X

@) "5 @
SHE S
A\ N

Children

Dg g A104

w
o

Hill Climbing
Goal - Node G

2/20/2021

MGIT-IT-HARINATH

Current

HHHHEEMMI
Ny X

@) "5 @
SHE S
A\ N

Children

Dg g A104

w
=

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

EHHHHEEMMI

Children

Dg g A104

HIEIEIIII
SRS
N N

W
N

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

EHHHHEEMMI
Oy
)] gﬁ @
SIS
N NN

Children

Dg g A104

Hill Climbing
Goal - Node

2/20/2021

MGIT-IT-HARINATH

Current

EHHHHEEMMI
Oy
)] gﬁ @
SIS
N NN

Children

Dg g A104

Hill Climbing
Goal - Node K

Local Maxima

2/20/2021 MGIT-IT-HARINATH 35

Hill

Climbing
Goal - Node -

K. chal

2/20/2021 MGIT-IT-HARINATH 36

Hill

Climbing
Goal - Node 0
K. chal &

2/20/2021 MGIT-IT-HARINATH 37

Hill
Climbing Children
Goal - Node

K Local T

2/20/2021 MGIT-IT-HARINATH 38

Hill

Climbing Current Children

Goal - Node
K. chal

2/20/2021 MGIT-IT-HARINATH 39

Hill

Climbing Current Children

Goal - Node
K. chal

2/20/2021 MGIT-IT-HARINATH 40

Hill Climbing Goal
- Node K Local Current Children
Maxima

2/20/2021 MGIT-IT-HARINATH 41

Hill

Climbing Current Children

Goal - Node
K. chal

2/20/2021 MGIT-IT-HARINATH 42

Hill

Climbing Current Children

Goal - Node
K. chal

2/20/2021 MGIT-IT-HARINATH 43

Hill

Climbing
Goal - Node]]
K Local a_
]

2/20/2021 MGIT-IT-HARINATH 44

Hill
Climbing
Goal - Node
K Local

2/20/2021

MGIT-IT-HARINATH

Current

_Current il Children
0
0
]
2
o

Children

/7 Jabw

g3 €5

Hill
Climbing
Goal - Node
K Local

2/20/2021

MGIT-IT-HARINATH

Current

_Current il Children
H
BH E2E
]
YA
o . -

46

Children

/7 Jabw

g3 €5

Hill
Climbing
Goal - Node
K Local

2/20/2021

MGIT-IT-HARINATH

Current

_ Current.
a
a
9
g

Children

/7 Jabw

g3 €5

Hill
Climbing
Goal - Node
K Local

2/20/2021

MGIT-IT-HARINATH

Current

_Current il Children
0
0
]
I8
o -
o N

Children

/7 Jabw

g3 €5

48

Hill Climbing
Goal - Node K Current Children
Local Maxima

/7 Jabw

Search Finished
No GOAL

2/20/2021

Hill

Climbing
Goal - Node
K. chal /7 /8010

Search Finished

No GOAL

2/20/2021 MGIT-IT-HARINA

Drawbacks of Hill climbing

« Local Maxima: peaks that aren’t the highest point in the space

« Plateaus: the space has a broad flat region that gives the search
algorithm no direction (random walk)

goal foothill plateau

/\/\ -
« Ridges: dropoffs to the sides; steps to the North, East, South and
West may go down, but a step to the NW may go up.

Variations of Hill Climbing

» Stochastic Hill Climbing- Chooses at random from among

uphill moves
» First Choice Hill Climbing- Generating successors randomly

until one is generated that is better than current state.
»Random Restart Hill Climbing- Conducts Series of Hill
Climbing Searches from randomly generated initial states till

goal is found

Success of Hill Climbing depends very much on the
shape of the State Space LandScape

2/20/2021 MGIT-IT-HARINATH 52

Simulated Annealing

»Variant of hill climbing (so up is good)

»Tries to explore enough of the search space early on, so
that the final solution is less sensitive to the start state

»SA hill-climbing can avoid becoming trapped at local
maxima.

» May make some downhill moves before finding a good
way to move uphill.

2/20/2021 MGIT-IT-HARINATH

53

Simulated Annealing (SA) Search

» Hill climbing: move to a better state
Efficient, but incomplete (can stuck in local maxima)

» Random walk: move to a random successor
Asymptotically complete, but extremely inefficient

> Idea: Escape local maximaby allowingsome “"bad“ moves but
gradually decrease their frequency.

More exploration at start and gradually hill-climbing become more
frequently selected strategy.

Simulated Annealing

»Comes from the physical process of annealing in which substances
are raised to high energy levels (melted) and then cooled to solid

state. -

y N

»The probability of moving to a higher energy state, instead of lower is
p = eM-AE/KT)

where AE is the positive change in energy level, T is the temperature, and k is
Bolzmann’s constant.

2/20/2021 MGIT-IT-HARINATH 55

Simulated Annealing

» At the beginning, the temperature is high.
» As the temperature becomes lower

» kT becomes lower

» AE/KT gets bigger

» (-AE/KT) gets smaller

» e-AE/KT) gets smaller

» As the process continues, the probability of a downhill
move gets smaller and smaller.

2/20/2021 MGIT-IT-HARINATH 56

For Simulated Annealing

» AE represents the change in the value of the objective function.

»Since the physical relationships no longer apply, drop k. So p =
e-AE/T)

»We need an annealing schedule, which is a sequence of values
of T: T, T, T,, ...

2/20/2021 MGIT-IT-HARINATH

57

Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
Input: problem, a problem
schedule, a mapping from time to “temperature”

current « MAKE-NODE(problem.INITIAL-STATE)
fort < 1to « do
T «schedule(t)
If T=0then return current
next « arandomly selected successor of current
AE < next.VALUE - current.VALUE
If AE >0 then current <« next [* better than current */
else current « next only with probability esE

2/20/2021 MGIT-IT-HARINATH 58

Simulated Annealing

»Inner most loop similar to Hill- Climbing

»Instead of Picking Best Move, it picks Random Move

> If Move improves the situation, it is always accepted

» The probability decreases exponentially with the badness of the move
»The probability also decreases as the temperature T goes down.

»Bad Moves are more likely to be allowed at the start when T is High and
they become unlikely as T decreases.

»If schedule lowers T slowly enough, the algorithm will find a Global
Optimum with Probability approaching 1.

2/20/2021 MGIT-IT-HARINATH 59

Simulated Annealing Applications

Basic Problems
» Traveling salesman
» Graph partitioning
»Matching problems
»Graph coloring
»Scheduling

Engineering
» VLS| design

»Placement

»Routing

» Array logic minimization
» Layout

» Facilities layout
»|mage processing

» Code design in information theory
2/20/2021 MGIT-IT-HARINATH

60

Local search in continuous spaces

» Infinite number of successor states

E.g., select locations for 3 airports such that sum of squared distances from
each city to its nearest airport is minimized

(X1, Y1), (X2, ¥2) , (X3, ¥3)
F(X1,Y1, X2, V2, X3, ¥3) = Xi=1 Zceci(xi — XY — V)

» Approach |: Discretization

» Just change variable by +6
E.g., 6x2 actions for airport example

» Approach 2: Continuous optimization veLL.L

Vf = 0 (only for simple cases)
Gradient ascent x'"' « x' +aVf (x)

Gradient ascent

Xt xt+ aVf (X')

- Local search problems also in continuous spaces
Random restarts and simulated annealing can be useful
Higher dimensions raises the rate of getting lost

Adjusting Gradient descent

» Adjusting a in gradient descent
+ Line search
» Newton-Raphson

Xt.+1 i Xt L H;l(xt)Vf (xt)

H, =82f/0x,.8xj

2/20/2021 MGIT-IT-HARINATH

63

Searching with Nondeterministic Actions

Vacuum World (actions = {left, right, suck})

2=

o = A
oSSR

.::x':?g

L=

=2
SR

5‘,&@

i

I~J

3

oS8 =
oS58 ‘

oSSR

]

Figure 4.9

The eight possible states of the vacuum world: states 7

—

and & are goal states.

2/20/2021

MGIT-IT-HARINATH

64

Searching with Nondeterministic Actions

» In the nondeterministic case, the result of an action can vary.

Erratic Vacuum World:

» When sucking a dirty square, it cleans it and sometimes
cleans up dirt in an adjacent square.

» When sucking a clean square, it sometimes deposits dirt on
the carpet.

2/20/2021 MGIT-IT-HARINATH 65

Generalization of State-Space Model

1. Generalize the transition function to return a set of
possible outcomes.

oldf: SxXA->S newf:SxA->2°
2. Generalize the solution to a contingency plan.
if state=s then action-set-1 else action-set-2
3. Generalize the search tree to an AND-OR tree.

2/20/2021 MGIT-IT-HARINATH 66

AND

AND-OR Search Tree

Node

2/20/2021

=t &
= oFah ~
Steck Richir
N
i O
r
d"‘?" g ‘-ﬁ- b=
7 5 d o5 2) s | =m
ol 2 AT o el L et Sreck
y
r 0 gy - el
5 gz 1|z eFa & 535 1| s 8 A i
2P

—

Al

LOOPp Suck Leff roor GOAL S

®

=)

L2

P

Figure 4.10

The first two levels of the search tree for the erratic vacimun world., State

nodes are OR nodes where some action must be chosen. At the AND nodes. shown as circles.
every outcome must be handled. as indicated by the arc linking the outgoing branches. The

solution found is shown in bold lines.

MGIT-IT-HARINATH

OR
Node

67

Searching with Partial Observations

» The agent does not always know its state!

» Instead, it maintains a belief state: a set of possible states it
might be in.

» Example: a robot can be used to build a map of a hostile
environment. It will have sensors that allow it to “see” the

world.

2/20/2021 MGIT-IT-HARINATH

68

Belief State Space for Sensorless Agent

L
V] initial R _state }
S = .) . =
on the left |4_-’Q|"§5 | |%f£| | [|4=d;;|°-.=ss | | |§Q| |¥=§Q| | |=£5 |L¢Q| | |:£_;7Q| |»§s |h¢ﬂl
—C[| | [
4 S
. e | [[)
L —
L o R -
— = I. y
s [| (==] | =] [[s
Knows left | [—2] | —] | — | [
side clean| I | T
= = — = = = Elmm
| == R i
Figure 4.14 The reachable portion of the belief-state space for the deterministic. sensor-
less we world. Each shaded b s £ a single belief st AT anyy Ziv itit,
the apent is in a particular belicf state but does 1ot know which phy sical state it is i, The
initial belief state (complete ignorance) is the top center box. Actions are represented by
labeled links. Self-loons are omuitted for clarits.

2/20/2021

MGIT-IT-HARINATH

Knows it’s
on the right.

69

Online search

» Off-line Search: solution is found before the agent starts acting
in the real world
» On-line search: interleaves search and acting

Necessary in unknown environments
Useful in dynamic and semi-dynamic environments

Saves computational resource in non-deterministic domains (focusing
only on the contingencies arising during execution)

Tradeoff between finding a guaranteed plan (to not get stuck in an undesirable
state during execution) and required time for complete planning ahead

» Examples
Robot in a new environment must explore to produce a map
New born baby
Autonomous vehicles

2/20/2021 MGIT-IT-HARINATH

70

Online search problems

» Different levels of ignorance

E.g., an explorer robot may not know “laws of physics™ about its actions

» We assume deterministic & fully observable environment here

Also, we assume the agent knows ACTIONS(s), c(s,a,s’) that can be
used after knowing s’ as the outcome, GOAL_TEST(s)

» Agent must perform an action to determine its outcome

RESULTS (s, a) is found by actually being in s and doing a
By filling RESULTS map table, the map of the environment is found.

» Agent may access to a heuristic function s G

-

2/20/2021 MGIT-IT-HARINATH 71

Competitive ratio

» Online path cost: total cost of the path that the agent
actually travels

» Best cost: cost of the shortest path “if it knew the search
space in advance”

» Competitive ratio = Online path cost / Best path cost
Smaller values are more desirable

» Competitive ratio may be infinite
Dead-end state: no goal state is reachable from it

irreversible actions can lead to a dead-end state

2/20/2021 MGIT-IT-HARINATH

72

Algorithms for online search

» Offline search: node expansion is a simulated process
rather than exerting a real action

Can expand a node somewhere in the state space and
immediately expand a node elsewhere

» Online search: can discover successors only for the
physical current node
Expand nodes in a local order
Interleaving search & execution

2/20/2021 MGIT-IT-HARINATH

73

Online search agents
» Online DFS

Physical backtrack (works only for reversible actions)

Goes back to the state from which the agent most recently entered the
current state

Works only for state spaces with reversible actions

» Online local search: hill-climbing
Random walk instead of random restart

Randomly selecting one of available actions (preference to untried actions)
Adding Memory (Learning Real Time A*): more effective

To remember and update the costs of all visited nodes.

2/20/2021 MGIT-IT-HARINATH

74

Definition

A constraint satisfaction problem consists of three components,
X, D, and C:

X is a set of variables, {X1,...,Xn}.

D is a set of domains, {D1,...,Dn}, one for each variable.

C is a set of constraints that specify allowable combinations of
values.

Each domain Di consists of a set of allowable values, {v1,...,vk}
for variable Xi.

Each constraint Ci consists of a pair {scope, rel}
scope is a tuple of variables that participate in the constraint

rel is a relation that defines the values that those variables can
take on.

Constraint satisfaction problems

> For example, if X1 and X2 both have the domain
{A,B}

> The constraint saying the two variables must have
different values can be written as

> {(X1, X2), [(A, B),(B,A)]} or
> {(X1, X2), X1 = X2}

> A state is defined as an assignment of values to some
or all variables.

> Consistent assignment: assignment does not violate
the constraints.

Constraint satisfaction problems

» An assignment is complete when every value Is
mentioned.

» Asolution to a CSP is a complete assignment that
satisfies all constraints.

» Some CSPs require a solution that maximizes an
objective function.

» Applications: Scheduling the time of observations on

the Hubble Space Telescope, Floor planning, Map
coloring, Cryptography

CSP example: Map Coloring

New South Wales

Tasmania

»Variables: WA, NT, Q, NSW, V, SA, T
»Domains: D,={red,green,blue}

» Constraints:adjacent regions must have different colors.

E.g. WA= NT (if the language allows this)
E.g. (WANT) = {(red,green),(red,blue),(green,red),...}

CSP example: Map Coloring

\\ggs

Tasmtia

Solutions are assignments satisfying all constraints

e.g.

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,
=green}

Constraint graph

CSP benefits

»>Standard representation pattern

»Generic goal and successor functions

»Generic heuristics (no domain
specific expertise).

Constraint graph = nodes are variables, ©
edges show constraints.

e.g. Tasmania is an independent subproblem.

Graph can be used to simplify search.

Varieties of CSPs

» Discrete variables
Finite domains; size d— 0(d ") complete assignments.

+ E.g. Boolean CSPs,Map Coloring, Job Scheduling.
Infinite domains (integers, strings, etc.)

+ E.g. Job scheduling, variables are start/end days for each job
+ Need a constraint language e.g StartJob, +5 < StartJob..

« Linear constraints solvable, nonlinear undecidable.

> Continuous variables

e.g. start/end times for Hubble Telescope observations.
Linear constraints solvable in poly time by LP methods.

Varieties of constraints

* Unary constraints involve a single variable,
— e.g., SA # green

* Binary constraints involve pairs of variables,
— e.g.,, SAz WA

* Higher-order constraints involve 3 or more variables,
— e.g., SA # WA # NT,cryptharithmetic column constraints.

Example: Cryptharithmetic

N0 O

T W
T W
o u

+
F 8
* Variables:t FTUWR O X; X, X;
* Domains: {0,1,2,3,4,5,6,7,8,9}

— X;=F,T#0,F#0

e Constraints
M #0,S #0 (unary constraints)

Y=D+E OR Y=D+E-10.
Dz2E, DM, D #N, etc.

Example: Cryptarithmetic

eVariables

DE,M, N OR,S,Y SEND
eDomains +MORE
{0,1,2,3,4,5,6,7,8,9} MONEY

Constraint Propagation

»In regular state-space search:

An algorithm can do only one thing: search.
»In CSPs there is a choice:

An algorithm can search or

do a specific type of inference called constraint
propagation, using the constraints to reduce the number of legal
values for a variable, which in turn can reduce the legal values
for another variable, and so on.

» Constraint propagation may be intertwined with search, or it
may be done as a preprocessing step, before search starts.

»Sometimes this preprocessing can solve the whole problem,
so no search is required at all.

Constraint Propagation

*V = variable being assigned at the current level
of the search

eSet variable V to a value in D(V)

eFor every variable V’ connected to V:

—Remove the values in D(V’) that are inconsistent with
the assigned variables

—For every variable V” connected to V"

eRemove the values in D(V”) that are no longer possible
candidates

e And do this again with the variables connected to V”
e until no more values can be discarded

Local Consistency

* The key idea is local consistency.

* |f we treat each variable as a node in a graph
and each binary constraint as an arc.

* The process of enforcing local consistency in
each part of the graph causes inconsistent
values to be eliminated throughout the graph.

Node Consistency

* Node consistency:

A single variable (corresponding to a node in the CSP
network) is node-consistent if all the values in the variable’s
domain satisfy the variable’s unary constraints.

Eg:The variable SA starts with domain {red, green, blue}, and we
can make it node consistent by eliminating green, leaving SA
with the reduced domain {red, blue}.

» Network is node-consistent if every variable in the network is
node-consistent.

» It is always possible to eliminate all the unary constraints in a
CSP by running node consistency.

> Itis also possible to transform all n-ary constraints into binary
ones.

Arc Consistency

* Arc consistency:

A variable in a CSP is arc-consistent if every
value in its domain satisfies the variable’s
binary constraints.

Xi is arc-consistent with respect to another
variable Xj if for every value in the current
domain Di there is some value in the domain
Dj that satisfies the binary constraint on the
arc (Xi, Xj).

Arc consistency

* Simplest form of propagation makes each arc consistent

e X —2>Yis consistent iff
for every value x of X there is some allowed y

e & .
. =S

| || 1N EET N HETH Q‘@

— /

constraint propagation propagates arc consistency on the graph.

Arc consistency

* Simplest form of propagation makes each arc consistent

e X —2>Yis consistent iff
for every value x of X there is some allowed y

e & .
wow e e v m e L%

] C I (1 o Em ‘0

\%_/ @

Arc consistency

* Simplest form of propagation makes each arc consistent

e X —2>Yis consistent iff
for every value x of X there is some allowed y

G g0k o

WA NT Q NSW v SA T
] I o-d o Em O

<& O

* |If X loses a value, neighbors of X need to be rechecked

Arc consistency

e Simplest form of propagation makes each arc consistent
e X —2Yis consistent iff

for every value x of X there is some allowed y

SSEA SSEa S . ‘i"o@
WA a NSW SA T P,
] _l IC ;I:]:l: :..---) (1

* If Xloses a value, neighbors of X need to be rechecked
* Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment

Time complexity: O(n?d>3)

Path consistency

Arc consistency reduces the domains of variables,

— sometimes finding a solution (by reducing every domain to
size 1) and

— sometimes finding that the CSP cannot be solved (by
reducing some domain to size 0).

Eg: Map-coloring problem on Australia, but with only two colors
allowed, red and blue.

Arc consistency can do nothing because every variable is
already arc consistent: each can be red with blue at the other
end of the arc (or vice versa).

But clearly there is no solution to the problem: because
Western Australia, Northern Territory and South Australia all
touch each other, we need at least three colors for them alone.

Path consistency

Arc consistency tightens down the domains (unary
constraints) using the arcs (binary constraints).

Path consistency tightens the binary constraints by using
implicit constraints that are inferred by looking at triples of
variables.

A two-variable set {Xi, Xj} is path-consistent with respect
to a third variable Xm if, for every assignment {Xi = a, Xj =
b} consistent with the constraints on {Xi, Xj}, there is an
assignment to Xm that satisfies the constraints on {Xi, Xm}
and {Xm, Xj}.

This is called path consistency because one can think of it
as looking at a path from Xi to Xj with Xm in the middle.

Continued...

* |n this case, there are only two: {WA =red, SA =
blue} and {WA = blue, SA = red}.
 With both of these assignments NT can be

neither red nor blue (because it would conflict
with either WA or SA).

e Because there is no valid choice for NT, we
eliminate both assignments, and we end up
with no valid assignments for {WA, SA}.

K-consistency

Stronger forms of propagation can be defined with the
notion of k-consistency.

A CSP is k-consistent if, for any set of k — 1 variables
and for any consistent assignment to those variables,
a consistent value can always be assigned to any kth
variable.

1-consistency says that, given the empty set, we can
make any set of one variable consistent: this is what we
called node consistency.

2-consistency is the same as arc consistency.

For binary constraint networks, 3-consistency is the
same as path consistency.

Continued...

* A CSP is strongly k-consistent if it is k-
consistent and is also (k — 1)-consistent, (k -

2)-consistent,... all the way down to 1-
consistent.

Global constraints

Global constraint is one involving an arbitrary number
of variables.

Global constraints occur frequently in real problems
and can be handled by special-purpose algorithms that
are more efficient than the general-purpose methodes.

For example, the Alldiff constraint says that all the
variables involved must have distinct values

One simple form of inconsistency detection for Alldiff
constraints works as follows:
— if m variables are involved in the constraint, and if they

have n possible distinct values altogether, and m>n, then
the constraint cannot be satisfied.

Continued...

Another important higher-order constraint is the resource
constraint, sometimes called the atmost constraint.

Eg: In a scheduling problem, let P1,...,P4 denote the
numbers of personnel assigned to each of four tasks.

The constraint that no more than 10 personnel are
assigned in total is written as Atmost(10, P1, P2, P3, P4).

Special propagation algorithms

Bound propagation
— E.g., number of people on two flight D1 = [0, 165] and D2 = [0, 385]

— Constraint that the total number of people has to be at least 420
— Propagating bounds constraints yields D1 = [35, 165] and D2 = [255, 385]

CSP as a standard search problem

» A CSP can easily expressed as a standard search
problem.

> Incremental formulation

Initial State: the empty assignment {}.

Successor functiom: Assign value to unassigned
variable provided that there is not conflict.

Goal test: the current assignment is complete.
Path cost: as constant cost for every step.

Standard search formulation

@‘@'3

Let’s try the standard search formulation. @‘@

O
We need: O
* Initial state: none of the variables has a value (color)
» Successor state: one of the variables without a value will get some value.
« Goal: all variables have a value and none of the constraints is violated.

NxD
N layers

[NXD]X[(N-1)xD]
WA WA WA NT

NT NT NT _/WA

Equal! N! x DN

v

: .. 29
There are N! x DN nodes in the tree but only DN distinct states??

Backtracking (Depth-First) search

» Special property of CSPs: They are commutative: NT _ WA
This means: the order in which we assign variables WA NT
does not matter.

» Better search tree: First order variables, then assign them values one-by-one.

-5
@
“""“8@
®

D/2

DN

Backtracking search

» Depth-first search

» Chooses values for one variable at a time and
backtracks when a variable has no legal values
left to assign.

» Uninformed algorithm
v No good general performance

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
If assignment is complete then return assignment
var <~ SELECT-UNASSIGNED-VARIABLE(VARIABLES][csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
If value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result <« RRECURSIVE-BACTRACKING(assignment, csp)
If result = failure then return result
remove {var=value} from assignment
return failure

Backtracking example

Western
Australia

Normthern
Territory

Queensland

South
Australia

—— i

New South Wales

Victoria

[

Tasmania

Backtracking example

5

— |

SR SR T

Backtracking example

Backtracking example

SR S

Improving backtracking efficiency

» Previous improvements — introduce heuristics

» General-purpose methods can give huge gains in
speed:
Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?
Can we take advantage of problem structure?

Minimum remaining values

S T S

var « SELECTUNASSIGNEDVARIABLE(VARIABLES[csp],assignment,csp)

» A.k.a. most constrained variable heuristic
»Rule: choose variable with the fewest legal moves
»Which variable shall we try first?

Degree heuristic

San® Shad Sl -

» Use degree heuristic

»Rule: Select variable that is involved in the largest number of
constraints on other unassigned variables.

» Degree heuristic is very useful as a tie breaker.
» In what order should its values be tried?

Least constraining value

\ !‘ Allows 1 value for SA
\ [Allows O values for SA

ST 5SS "H:<

» Least constraining value heuristic

»Rule: given a variable choose the least constraining value i.e. the one
that leaves the maximum flexibility for subsequent variable assignments.

Forward checking

S

WA NT Q NSW vV SA T

» Can we detect inevitable failure early?
And avoid it later?

» Forward checking idea: keep track of remaining legal values for
unassigned variables.

» Terminate search when any variable has no legal values.

Forward checking

ST S

WA NT Q NSW W S8 T
ErEErEErEErEEr e EmE .
. | EErEETmE T] B[R

» Assign {WA=red}
» Effects on other variables connected by constraints with WA

NT can no longer be red
SA can no longer be red

Forward checking

II. ",l:‘ "“—H:_"‘l—']:‘

Lt NT L] MSW W S8
TN I Y 1 B 1 By 1 Dy 1 By 11 By 1
[| EE T EETTEE =] EE]
[| | [E mEJE T =] EE]

» Assign {Q=green}
» Effects on other variables connected by constraints with WA

NT can no longer be green
NSW can no longer be green
SA can no longer be green

MRV heuristic will automatically select NT and SA next, why?

Forward checking

llfll: "“—ﬁ: “1 '.1: "‘FL:

WA NT L NS W S48 T
(M EErFEE e ErTEE T EfE T E[m]
1 1 1 I 1 1 C 11
1 1] [E mET] C 11
[—] 1| [1| 1

»1f V is assigned blue

» Effects on other variables connected by constraints with WA

SA is empty
NSW can no longer be blue

»FC has detected that partial assignment is inconsistent with the
constraints and backtracking can occur.

Local search for CSP

» Use complete-state representation
> For CSPs

allow states with unsatisfied constraints
operators reassign variable values

» Variable selection: randomly select any
conflicted variable

> Value selection: min-conflicts heuristic

Select new value that results in a minimum
number of conflicts with the other
variables

Local search for CSP

function MIN-CONFLICTS(csp, mazx .steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
maz-steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
for i = 1 to max_steps do
if current is a solution for csp then return current
var «— a randomly chosen conflicted variable from csp.VARIABLES
value « the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var = value in current
return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial
state may be chosen randomly or by a greedy assignment process that chooses a minimal-
conflict value for each variable in turn. The CONFLICTS function counts the number of
constraints violated by a particular value, given the rest of the current assignment.

Min-conflicts example 1

h=5

&)

iy

h=3

=)

b4

h=1

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

N Nl = N e N ¥l N
L I : H H B
H B I oW mE
N ¥ - W - H¥N =
¥ BN B ¥ N EE ¥ N EN
O e 2 H H B
W H¥N = N I‘E’IEI
H N NN | H N N¥e

» A two-step solution for an 8-queens problem using min-conflicts
heuristic.

» At each stage a queen is chosen for reassignment in its column.

» The algorithm moves the queen to the min-conflict square breaking
ties randomly.

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

I = .
number of variables

CPU
time

D S
critical

ratio

Bectioma 3.7 and 4.4, Chapter 5 of ATMAZe 44

Problem structure

»How can the problem structure help to find a solution quickly?

» Subproblem identification is important:
v'Coloring Tasmania and mainland are independent
v'Subproblems Identifiable as connected components of constrained gr

» Improves performance

Tree-structured CSPs

A) (E)
56 _
O J\®

» Theorem: If the constraint graph has no loops then CSP can be
solved in O(nd 2) time

»Compare difference with general CSP, where worst case is O(d ")

Tree-structured CSPs

(b)

» In most cases subproblems of a CSP are connected as a tree
» Any tree-structured CSP can be solved in time linear in the number of variables.

»Choose a variable as root, order variables from root to leaves such
that every node’s parent precedes it in the ordering.

»For jfrom ndown to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X;),X;)
»For jfrom 1 to n assign X, consistently with Parent(X;)

Nearly tree-structured CSPs

@
e] o G
SN ©

O o

@ ®

» Can more general constraint graphs be reduced to trees?

» Two approaches:
Remove certain nodes
Collapse certain nodes

Nearly tree-structured CSPs

@o ©
o s
5 o
» ldea: assign values to some variables so that the remaining variables
form a tree.

Assume that we assign {SA=x} « cycle cutset

»And remove any values from the other variables that are inconsistent.

»>The selected value for SA could be the wrong one so we have to try
all of them

Nearly tree-structured CSPs

(v (v
@‘@'é . ® °@
O O
© ®

» This approach is worthwhile if cycle cutset is small.
»Finding the smallest cycle cutset is NP-hard

Approximation algorithms exist

» This approach is called cutset conditioning.

Nearly tree-structured CSPs

»Tree decomposition of the
constraint graph in a set of
connected subproblems.

»Each subproblem is solved
Independently

»Resulting solutions are combined.
»Necessary requirements:

»Every variable appears in
atleast one of the subproblems.
>If two variables are connected
in the original problem, they
must appear together in atleast
one subproblem.

»>If a variable appears in two
subproblems, it must appear in
each node on the path.

Constraint satisfaction problems (CSPs) represent a state with a set of variable/value pairs
and represent the conditions for a solution by a set of constraints on the variables. Many
important real-world problems can be described as CSPs.

A number of inference techniques use the constraints to infer which variable/value pairs are
consistent and which are not. These include node, arc, path, and k-consistency.

Backtracking search, a form of depth-first search, is commonly used for solving CSPs.
Inference can be interwoven with search.

The minimum-remaining-values and degree heuristics are domain-independent methods for
deciding which variable to choose next in a backtracking search. The leastconstraining-value
heuristic helps in deciding which value to try first for a given variable. Backtracking occurs
when no legal assignment can be found for a variable. Conflict-directed backjumping
backtracks directly to the source of the problem.

Local search using the min-conflicts heuristic has also been applied to constraint satisfaction
problems with great success.

The complexity of solving a CSP is strongly related to the structure of its constraint graph.
Tree-structured problems can be solved in linear time. Cutset conditioning can reduce a
general CSP to a tree-structured one and is quite efficient if a small cutset can be found. Tree
decomposition techniques transform the CSP into a tree of subproblems and are efficient if
the tree width of the constraint graph is small.

Thank

Preposition Logic
Forward & Backward Chaining
Probability Bayes Theorem

Forward Chaining and backward chaining in Al

In artificial intelligence, forward and backward chaining is one of
the important topics, but before understanding forward and
backward chaining lets first understand that from where these two
terms came.

Inference engine:

The inference engine is the component of the intelligent system in
artificial intelligence, which applies logical rules to the knowledge
base to infer new information from known facts. The first
inference engine was part of the expert system. Inference engine
commonly proceeds in two modes, which are:

1.Forward chaining (Data driven approach)

2. Backward chaining (Goal driven approach)

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which
enables knowledge base to use a more restricted and efficient
inference algorithm.

Logical inference algorithms use forward and backward chaining
approaches, which require KB in the form of the first-order definite
clause.

Definite clause: A clause which is a disjunction of literals with exactly
one positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most
one positive literal is known as horn clause. Hence all the definite
clauses are horn clauses.

Example: (- p V- q V k). It has only one positive literal k.

It is equivalenttop A q = k.

A. Forward Chaining:

Forward chaining is also known as a forward deduction or forward
reasoning method when using an inference engine.

Forward chaining is a form of reasoning which start with atomic
sentences in the knowledge base and applies inference rules (Modus
Ponens) in the forward direction to extract more data until a goal is
reached.

The Forward-chaining algorithm starts from known facts, triggers all
rules whose premises are satisfied, and add their conclusion to the
known facts. This process repeats until the problem is solved.

Properties of Forward-Chaining:

*|t is a down-up approach, as it moves from bottom to top.

*It is a process of making a conclusion based on known facts or
data, by starting from the initial state and reaches the goal state.
*Forward-chaining approach is also called as data-driven as we
reach to the goal using available data.

*Forward -chaining approach is commonly used in the expert
system, such as CLIPS, business, and production rule systems.

Example:

"As per the law, it is a crime for an American to sell
weapons to hostile nations. Country A, an enemy
of America, has some missiles, and all the missiles
were sold to it by Robert, who is an American

citizen.”

Prove that "Robert is criminal."

Facts Conversion into FOL:

It is a crime for an American to sell weapons to hostile nations.
(Let's say p, g, and r are variables)

American (p) A weapon(q) A sells (p, q, r) A hostile(r) >
Criminal(p) ...(1)

Country A has some missiles.
?p Owns(A, p) A Missile(p).

It can be written in two definite clauses by using Existential
Instantiation, introducing new Constant T1.

Owns(A, T1) ... (2)

Missile(T1) (3)

All of the missiles were sold to country A by Robert.

?p Missiles(p) A Owns (A, p) = Sells (Robert, p, A)

Missiles are weapons.
Missile(p) » Weapons (p) (5)

Enemy of America is known as hostile.
Enemy(p, America) >Hostile(p) (6)

Country A is an enemy of America.
Enemy (A, America) (7)

Robert is American
American(Robert). (8)

Forward chaining proof:

Step-1:
In the first step we will start with the known facts
and will choose the sentences which do not have

implications, such as:

American(Robert), Enemy(A, America),
Owns(A, T1), and Missile(T1).

All these facts will be represented as below.

‘.ﬂ.mericaﬂ (Robert) H Missile (T1) \ ‘ Owns (A T1) \ ‘ Enemy (A, America) \

Step-2:
At the second step, we will see those facts which infer from
available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the
first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1},

so Sells (Robert, T1, A) is added, which infers from the conjunction
of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is
added and which infers from Rule-(7).

Weapons(T1) | |Sells (Robert, T1, Al

Hostile(A)

‘American (Robert) \

Missile (T1)

Owns (A, T1)

Enemy (A, America)

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the
substitution {p/Robert, q/T1, r/A}, so we can add
Criminal(Robert) which infers all the available facts. And hence we
reached our goal statement.

Criminal (Robert)

Weapons(T1) Sells (Robert, T1, A) Hostile(A)

Missile (T1) Owns (A,T1)

‘ American (Robert) \

Enemy (A, America)

B. Backward Chaining:

Backward-chaining is also known as a backward deduction or
backward reasoning method when using an inference engine. A
backward chaining algorithm is a form of reasoning, which starts
with the goal and works backward, chaining through rules to find
known facts that support the goal.

Properties of backward chaining:

|t is known as a top-down approach.
*Backward-chaining is based on modus ponens inference
rule.

*In backward chaining, the goal is broken into sub-goal or
sub-goals to prove the facts true.

It is called a goal-driven approach, as a list of goals
decides which rules are selected and used.

*Backward -chaining algorithm is used in game theory,
automated theorem proving tools, inference engines,
proof assistants, and various Al applications.

*The backward-chaining method mostly used a depth-first
search strategy for proof.

Example:

In backward-chaining, we will use the same above example, and
will rewrite all the rules.

American (p) A weapon(q) A sells (p, q, r) A hostile(r) >
Criminal(p) ...(1)

Owns(A, T1) ... (2)
Missile(T1)

Missile(p) » Weapons(p) = (5)
Enemy(p, America) Hostile(p) = (6)
Enemy (A, America) = (7)
American(Robert). (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which
is Criminal(Robert), and then infer further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact,
we will infer other facts, and at last, we will prove those facts true.
So our goal fact is "Robert is Criminal," so following is the

predicate of it.

Criminal (Robert)

Step-2:

At the second step, we will infer other facts form goal fact
which satisfies the rules. So as we can see in Rule-1, the goal
predicate Criminal (Robert) is present with substitution
{Robert/P}. So we will add all the conjunctive facts below the
first level and will replace p with Robert.

Here we can see American (Robert) is a fact, so it is proved
here

Criminal (Robert)

{ Robert/p}

American {Robert) VWeapon (q) Sells (Robert q,r) Hostile(r)

{3

Step-3:

At step-3, we will extract further fact Missile(q) which infer from
Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with
the substitution of a constant T1 at q.

Criminal (Robert)

{ Robert/p}

American (Robert) VWeapon (q) Sells (Robert, T1,r) Hostile(r)

{3

Missile (q)

{ q/T1}

Step-4:

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form
Sells(Robert, T1, r) which satisfies the Rule- 4, with the
substitution of A in place of r. So these two statements are

proved here.

Criminal (Robert)

{ Robert/p}

American (Robert) Weapon (q) Sells (Robert, T1.1) Hostile(r)
3 /\
Missile (q) Missile (T1) Owns(A T1)
{ g/T1] I {3}

Step-5: we can infer the fact Enemy(A,
America) from Hostile(A) which satisfies Rule- 6. And hence all the
statements are proved true using backward chaining

Criminal (Robert)

American {Robert) VWeapon (q) Sells (Robert, T1.1) Hostile{A)
- / o
Missile (q) Missile (T1) Owns(A,T1) Enemy (A America)

{am} i ¥ { { 3

Advantages

*|t can be used to draw multiple conclusions.

*It provides a good basis for arriving at conclusions.
*|t’s more flexible than backward chaining because it
does not have a limitation on the data derived from it.

Disadvantages

*The process of forward chaining may be time-consuming.
It may take a lot of time to eliminate and synchronize
available data.

*Unlike backward chaining, the explanation of facts or
observations for this type of chaining is not very clear. The
former uses a goal-driven method that arrives at
conclusions efficiently.

Advantages

*The result is already known, which makes it easy to
deduce inferences.

*It’s a quicker method of reasoning than forward
chaining because the endpoint is available.

*In this type of chaining, correct solutions can be
derived effectively if pre-determined rules are met by
the inference engine.

Disadvantages

*The process of reasoning can only start if the endpoint
is known.

|t doesn’t deduce multiple solutions or answers.

It only derives data that is needed, which makes it less
flexible than forward chaining.

Probabilistic reasoning in Artificial intelligence

Uncertainty:

Till now, we have learned knowledge representation using first-
order logic and propositional logic with certainty, which means
we were sure about the predicates.

With this knowledge representation, we might write A-B,
which means if A is true then B is true,

Consider a situation where we are not sure about whether A is
true or not then we cannot express this statement, this situation
is called uncertainty.

So to represent uncertain knowledge, where we are not sure
about the predicates, we need uncertain reasoning or
probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to
occur in the real world.

*Information occurred from unreliable sources.
*Experimental Errors

*Equipment fault

*Temperature variation

*Climate change.

Probabilistic reasoning:

*Probabilistic reasoning is a way of knowledge representation
where we apply the concept of probability to indicate the
uncertainty in knowledge.

*In probabilistic reasoning, we combine probability theory with
logic to handle the uncertainty.

*We use probability in probabilistic reasoning because it provides a
way to handle the uncertainty that is the result of someone's
laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty
of something is not confirmed, such as "It will rain today,"
"behavior of someone for some situations," "A match between
two teams or two players." These are probable sentences for
which we can assume that it will happen but not sure about it, so
here we use probabilistic reasoning.

Need of probabilistic reasoning in Al:

*When there are unpredictable outcomes.

*When specifications or possibilities of predicates
becomes too large to handle.

*When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve
problems with uncertain knowledge:

*Bayes' rule

*Bayesian Statistics

Probability:

Probability can be defined as a chance that an uncertain
event will occur. It is the numerical measure of the likelihood
that an event will occur. The value of probability always
remains between 0 and 1 that represent ideal uncertainties.

0= P(A) =1, where P(A) is the probability of an event A.
P(A)} = 0, indicates total uncertainty in an event A.

P{A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

Number of desired outcomes

Probability of occurrence =
Total number of outcomes

o P(-A) = probability of a not happening event.

o P(-A) + P(A) = 1.

Event: Each possible outcome of a variable is called

an event.
Sample space: The collection of all possible events is

called sample space.

Random variables: Random variables are used to
represent the events and objects in the real world.

Prior probability: The prior probability of an event is
probability computed before observing new information.

Posterior Probability: The probability that is calculated
after all evidence or information has taken into account. It
is @a combination of prior probability and new information.

Conditional probability:

«Conditional probability is a probability of occurring an
event when another event has already happened.
Let's suppose, we want to calculate the event A when
event B has already occurred, "the probability of A
under the conditions of B", it can be written as: P(A/B)

Where P(AAB)= Joint probability of a and B
P(B)= Marginal probability of B.

If the probability of A is given and we need to find the
probability of B, then it will be given as:

If the probability of A is given and we need to find the
probability of B, then it will be given as:

It can be explained by using the below Venn diagram,
where B is occurred event, so sample space will be
reduced to set B, and now we can only calculate event A
when event B is already occurred by dividing the
probability of P(AAB) by P(B).

Bayes' theorem in Artificial intelligence

Bayes' theorem:

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian
reasoning, which determines the probability of an event with
uncertain knowledge.

In probability theory, it relates the conditional probability and
marginal probabilities of two random events.

Bayes' theorem was named after the British mathematician Thomas
Bayes. The Bayesian inference is an application of Bayes' theorem,
which is fundamental to Bayesian statistics.

It is a way to calculate the value of P(B|A) with the knowledge of
P(A|B).

Bayes' theorem allows updating the probability prediction of an
event by observing new information of the real world.

Example: If cancer corresponds to one's age then by using Bayes'
theorem, we can determine the probability of cancer more
accurately with the help of age.

Bayes' theorem can be derived using product rule and conditional
probability of event A with known event B:

As from product rule we can write:

P(A A B)= P(A|B) P(B) or
Similarly, the probability of event B with known event A:
P(A A B)= P(B|A) P(A)

Equating nght hand side of both the equations, we will get:

P(B|A) P(A)

P(AIB) = P(B)

..{a)

The above equation (a) is called as Bayes' rule or Bayes' theorem.
This equation is basic of most modern Al systems for probabilistic
inference.

F(B|A) P{A)
PiB)

P(A|B) =

*P(A|B) is known as posterior, which we need to calculate, and it
will be read as Probability of hypothesis A when we have occurred
an evidence B.

*P(B|A) is called the likelihood, in which we consider that
hypothesis is true, then we calculate the probability of evidence.

*P(A) is called the prior probability, probability of hypothesis
before considering the evidence

*P(B) is called marginal probability, pure probability of an
evidence.

In the equation (a), in general, we can write P (B) =
P(A)*P(B|Ai), hence the Bayes' rule can be written as:

P(Aj)+P(B|aj)

P(A|B) =
e T X P(Aj)+P(B|A;)

Where A, A,, A;,........ , A, is a set of mutually exclusive
and exhaustive events.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A)
in terms of P(A|B), P(B), and P(A).

This is very useful in cases where we have a good
probability of these three terms and want to determine
the fourth one.

Suppose we want to perceive the effect of some unknown

cause, and want to compute that cause, then the Bayes'
rule becomes:

Example-1:

Question: what is the probability that a patient has
diseases meningitis with a stiff neck?

Given Data:

A doctor is aware that disease meningitis causes a
patient to have a stiff neck, and it occurs 80% of the
time. He is also aware of some more facts, which are
given as follows:

The Known probability that a patient has meningitis
disease is 1/30,000.

The Known probability that a patient has a stiff neck is
2%.

Let a be the proposition that patient has stiff neck and
b be the proposition that patient has meningitis. , so
we can calculate the following as:

P(a|lb) = 0.8
P(b) = 1/30000
P(a)= .02
P(bla) = PALP® _ %8*Goess) _ 4 901333333,
Pla) 0.02

Hence, we can assume that 1 patient out of 750
patients has meningitis disease with a stiff neck.

Unit 3

Knowledge Representation
Techniques

Lecture Module - 15

Knowledge Representation

e Knowledge representation (KR) is an important issue In
both cognitive science and artificial intelligence.

- In cognitive science, it is concerned with the way people store
and process information and

- In artificial intelligence (Al), main focus is to store knowledge so
that programs can process it and achieve human intelligence.
e There are different ways of representing knowledge e.g.
— predicate logic,
- semantic networks,
- extended semantic net,
- frames,
— conceptual dependency etc.
e In predicate logic, knowledge is represented in the form
of rules and facts as is done in Prolog.

Semantic Network

e Formalism for representing information about objects,
people, concepts and specific relationship between
them.

e The syntax of semantic net is simple. It is a network of

labeled nodes and links.

— It's a directed graph with nodes corresponding to concepts,
facts, objects etc. and

— arcs showing relation or association between two concepts.

e The commonly used links in semantic net are of the

followmg types.
Isa = subclass of entity (e.g., child hospital is subclass of
hospital)
- inst - particular instance of a class (e.g., India is an
Instance of country)
- prop > property link (e.g., property of dog is ‘bark)

Representation of Knowledge in Sem Net

“Every human, animal and bird is living thing
who breathe and eat. All birds can fly. All
man and woman are humans who have two
legs. Cat Is an animal and has a fur. All
animals have skin and can move. Giraffe Is
an animal who iIs tall and has long legs.
Parrot is a bird and is green in color”.

Representation In Predicate Logic

e Every human, animal and
bird is living thing who
breathe and eat.

VX [human(X) =2 living(X)]
VX [animal(X) =2 living(X)]
VX [bird(X) = living(X)]

e All birds are animal and
can fly.

VX [bird(X) A canfly(X)]

e Every man and woman
are humans who have two
legs.

VX [man(X) A haslegs(X)]
vX [woman(X) A haslegs(X)]
VX [human(X) A has(X, legs)]

e CatiIs an animal and has

a fur.
animal(cat) A has(cat, fur)

e All animals have skin

and can move.

vX J[animal(X) = has(X,
skin) A canmove(X)]
Giraffe Is an animal who
Is tall and has long legs.
animal(giraffe) A has(giraffe,
long_legs) A is(giraffe, tall)
Parrot is a bird and Is
green in color.

bird(parrot) A has(parrot,
green_colour)

Man

Representation In Semantic Net

Semantic Net

________ breathe, eat

Living_thing

isa Isa
(i =" L O
Human Animal Bird |
Isa inst
N prop (gree)

/ \a | mstT
X ' Cat Parrot |)

Gi raffe

Woman
Tl prop

Tinst

john

T PrOP

tall, Iong legs

Inheritance

e Inheritance mechanism allows knowledge to be
stored at the highest possible level of abstraction

which reduces the size of knowledge base.
- It facilitates inferencing of information associated with
semantic nets.

- It is a natural tool for representing taxonomically structured
iInformation and ensures that all the members and sub-
concepts of a concept share common properties.

- It also helps us to maintain the consistency of the
knowledge base by adding new concepts and members of
existing ones.

e Properties attached to a particular object (class) are
to be inherited by all subclasses and members of
that class.

Property Inheritance Algorithm

Input: Object, and property to be found from Semantic
Net;

Output:Yes, if the object has the desired property else
return false;

Procedure:

e Find an object in the semantic net; Found = false;

e While {(object # root) OR Found } DO
{ If there is a a property attribute attached with an object then
{ Found =true; Report ‘Yes’} else
object=inst(object, class) OR isa(object, class)
%
e If Found = False then report ‘No’; Stop

Coding of Semantic Net in Prolog

Isa facts Instance facts Property facts
Isa(living_thing, nil). inst(john, man). prop(breathe, living_thing).
Isa(human, living_thing). inst(giraffe, animal). prop(eat, living_thing).
Isa(animals, living_thing). | inst(parrot, bird) prop(two_legs, human).
Isa(birds, living_thing). prop(skin, animal).
Isa(man, human). prop(move, animal).
Isa(woman, human). prop(fur, bird).

Isa(cat, animal). prop(tall, giraffe).
prop(long_legs, giraffe).
prop(tall, animal).
prop(green, parrot).

Inheritance Rules in Prolog

Instance rules:
iInstance(X, Y)
iInstance (X, Y)
Subclass rules:
subclass(X, Y)
subclass(X, Y)
Property rules:
property(X, Y)
property(X, Y)
property(X, Y)

Inst(X, Y).
Inst(X, Z), subclass(Z,Y).

Isa(X, Y).
Isa(X, Z), subclass(Z, Y) .

prop(X, Y).
iInstance(Y,Z), property(X, 2).
subclass(Y, Z), property(X, Z).

Queries

Is john human?

Is parrot a living thing?
Is giraffe an aimal?

Is woman subclassof
living thing

Does parrot fly?

Does john breathe?
has parrot fur?

Does cat fly?

?- Instance(john, humans). Y

?- Instance (parrot,
living_thing). Y
?- Instance (giraffe, animal).Y
?- subclass(woman,
living_things). Y
?- property(fly, parrot). Y
?- property (john, breathe). Y
?- property(fur, parrot). N
?- property(fly, cat). N

Knowledge Representation using Frames

e Frames are more structured form of packaging
knowledge,
— used for representing objects, concepts etc.

e Frames are organized into hierarchies or network of
frames.

e Lower level frames can inherit information from upper
level frames in network.

e Nodes are connected using links viz.,

— ako / subc (links two class frames, one of which is subclass of
other e.g., science_faculty class is ako of faculty class),

- Is_a / inst (connects a particular instance of a class frame
e.g., Renuka is_a science_faculty)

- a_part_of (connects two class frames one of which is
contained in other e.g., faculty class is_part_of department
class).

- Property link of semantic net is replaced by SLOT fields.

cont...

e A frame may have any number of slots needed for
describing object. e.qg.,
- faculty frame may have name, age, address, qualification etc
as slot names.

e Each frame Includes two basic elements : slots and
facets.

— Each slot may contain one or more facets (called fillers)
which may take many forms such as:

value (value of the slot),
default (default value of the slot),

range (indicates the range of integer or enumerated values, a
slot can have),

demons (procedural attachments such as if needed,
if_deleted, if added etc.) and

other (may contain rules, other frames, semantic net or any
type of other information).

Frame Network - Example

pd

university
a_part_o:x

_~

department

T a_ part_of

faculty

hostel

Detalled Representation of Frame

Network

frameO

f_name: university
phone: (default: - 011686971)
address : (default - 11T Delhi)

frame1l / \ frames

f _nNname : department
a_part_of : frameO
programme : [Btech, Mtech, Ph.D]

framell

f name: faculty

a_part_of : framel

age : range (25 - 60)
Nnationality: (default - Indian)
qual: (default - Post graduate)

f name : hostel
a_part_of : frameO
room : (default - 100)

frame2l1

f nNname : nilgiri
is _a: frame2
phone : 0116862345

framel?2 T framel3
f nNname : science faculty f_nNname : renuka
ako : framell |t is a: framel2
qual : (default - M.Sc) qual : Ph.D

age: 45

adrress: Janak Puri

Description of Frames

e Each frame represents either a class or an
instance.

° Class frame represents a general concept whereas
Instance f_rame represents a specific occurrence of
the class instance.

e Class frame generally have default values which
can be redefined at lower levels.

o If class frame has actual value facet then decedent
frames can not modify that value.

e Value remains unchanged for subclasses and
instances.

Inheritance In Frames

e Suppose we want to know nationality or phone of an
Instance-frame framel3 of renuka.

e These informations are not given in this frame.

e Search will start from framel3 in upward direction till
we get our answer or have reached root frame.

e The frames can be easily represented in prolog by
choosing predicate name as frame with two
arguments.

e First argument is the name of the frame and second
argument is a list of slot - facet pair.

Coding of frames in Prolog

frame(university, [phone (default, 011686971),
address (default, IIT Delhi)]).

frame(deaprtment, [a_part_of (university),
programme ([Btech, Mtech, Ph.d]))]).

frame(hostel, [a_part_of (university), room(default, 100)]

frame(faculty, [a_part_of (department), age(range,25,60),

).

nationality(default, indian), qual(default, postgraduate)]
frame(nilgiri, [is_a (hostel), phone(011686234)]).

frame(science_faculty, [ako (faculty),qual(default, M.Sc.)]).

frame(renuka, [is_a (science faculty), qual(Ph.D.),
age(45), address(janakpuri)]).

).

Inheritance Program in Prolog

find(X, Y) :- frame(X, 2), search(Z, Y), !.

find(X, Y) :- frame(X, [is_a(Z),_]

), find(Z, Y), \.

find(X, Y) :- frame(X, [ako(Z),]

), find(Z, Y), \.

find(X, Y) :- frame(X, [a_part_of(Z), 1), find(Z, Y).

e Predicate search will basically retrieve the list of

slots-facet pair and will try to
e If match is found then its

match Y for slot.
facet value Is retrieved

otherwise process is continued till we reach to root

frame

Extended Semantic Network

In conventional Sem Net, clausal form of logic can
not be expressed.

Extended Semantic Network (ESNet) combines the
advantages of both logic and semantic network.

In the ESNet, terms are represented by nodes similar
to Sem Net.

Binary predicate symbols in clausal logic are

represented by labels on arcs of ESNet.

- An atom of the form “Love(john, mary)” is an arc labeled as
‘Love’ with its two end nodes representing ‘john’ and ‘mary’.

Conclusions and conditions in clausal form are

represented by different kinds of arcs.

— Conditions are drawn with two lines «<— and conclusions are
drawn with one heavy line <«—.

Examples

e Represent ‘grandfather’ definition
Gfather(X, Y) € Father(X, Z), Parent(Z, Y) in ESNet.

/[

Father wt

X ——
Gfather

Cont...Example

 Represent clausal rule “Male(X), Female(X) <
Human(X)” using binary representation as
“Isa(X, male), Isa(X, female) < Isa(X, human)” and
subsequently in ESNet as follows:

male

Inference Rules in ESNet

e Inference rules are embedded in the representation
itself.

The inference that “for every action of giving, there is
an action of taking” in clausal logic written as

“Action(E, take) € Action(E, give)”.

ESNet Action

Action

cont...

e The inference rule such as “an actor of taking action is
also the recipient of the action” can be easily
represented in clausal logic as:

- Here E is a variable representing an event where an action of
taking is happening).

Recipient(E, Y) € Acton(E, take), Actor (E, Y)

ESNet Action
E P take

Recipie
Actor

Example

e Represent the following clauses of Logic in ESNet.
Recipient(E, Y) € Acton(E, take), Actor (E, Y)
Object (e, apple).
Action(e, take).
Actor (e, john) .

E Recipient
Actor Action Actor
/ Action
Y

Contradiction

 The contradiction in the ESNet arises If we have the
following situation.

Part_of

P —— X

¢ sa
Part_of
Y

Deduction in ESNet

e Both of the following Iinference mechanisms are
available in ESNet.

— Forward reasoning inference (uses bottom up approach)

= Bottom Up Inferencing: Given an ESNet, apply the
following reduction (resolution) using modus ponen rule of
logic ({A € B, B} then A).

— Backward reasoning inference (uses top down approach).

= Top Down Inferencing: Prove a conclusion from a given
ESNet by adding the denial of the conclusion to the
network and show that the resulting set of clauses in the
network is inconsistent.

Example: Bottom Up Inferencing

Given set of clauses

Isa(X, human)
Isa(john, man).

< Isa(X, man)

Inferencing

Isa(john, human)

John

Here

X is bound to john

human

Isa

john

Example: Top Down Inferencing

Given set of clauses

Isa(X, human) €< Isa(X, man)
Isa(john, man).

Prove conclusion

Query: Isa(john, human)

_4lenial of query

john Isa

Isa

cont...

|53

human
A

John

|53

X = John

Contradiction or Empty network is
oencrated. Hence “Isa(john, human)”
1S proved.

Monotonic & Non-Monotonic
Reasoning

Monotonic Reasoning:

In monotonic reasoning, once the conclusion is taken,
then it will remain the same even if we add some other
information to existing information in our knowledge
base. In monotonic reasoning, adding knowledge does
not decrease the set of prepositions that can be
derived.

To solve monotonic problems, we can derive the
valid conclusion from the available facts only, and it
will not be affected by new facts.

Monotonic reasoning is used in conventional reasoning systems,
and a logic-based system is monotonic.

Any theorem proving is an example of monotonic reasoning.

Example:

Earth revolves around the Sun.

It is a true fact, and it cannot be changed even if we add another
sentence in knowledge base like, "The moon revolves around the
earth” Or "Earth is not round," etc.

Advantages of Monotonic Reasoning:

In monotonic reasoning, each old proof will always remain valid.
If we deduce some facts from available facts, then it will remain
valid for always.

Disadvantages of Monotonic Reasoning:
We cannot represent the real world scenarios using Monotonic
reasoning.

Hypothesis knowledge cannot be expressed with monotonic
reasoning, which means facts should be true.

Since we can only derive conclusions from the old proofs, so new
knowledge from the real world cannot be added.

Non-monotonic Reasoning:

In Non-monotonic reasoning, some conclusions may be
invalidated if we add some more information to our
knowledge base.

Logic will be said as non-monotonic if some conclusions
can be invalidated by adding more knowledge into our
knowledge base.

Non-monotonic reasoning deals with incomplete and
uncertain models.

"Human perceptions for various things in daily life, "is a
general example of non-monotonic reasoning.

Example: Let suppose the knowledge base contains the
following knowledge:

Birds can fly
Penguins cannot fly
Pitty is a bird

So from the above sentences, we can conclude that Pitty can
fly.

However, if we add one another sentence into knowledge base
"Pitty is a penguin”, which concludes "Pitty cannot fly", so it
invalidates the above conclusion.

Advantages of Non-monotonic reasoning:

For real-world systems such as Robot navigation, we can use non-
monotonic reasoning.

In Non-monotonic reasoning, we can choose probabilistic facts or
can make assumptions.

Disadvantages of Non-monotonic Reasoning:

In non-monotonic reasoning, the old facts may be invalidated by
adding new sentences.

It cannot be used for theorem proving.

Preposition Logic

2,

4.

Solution

Marcus was a man.

» Man(Marcus).

Marcus was a Pompeian.

» Pompelan(marcus)

All Pompeian were Romans.

» Vx: Pompelan(x) — Roman(x)

Caesar was a ruler.
» Ruler(Caesar)

All Romans were either loyal to Caesar or hated him.
» ¥x: Roman(x) — LoyalTo(x,Caesar) v Hate(x,Caesar)

6. Everyone 1s loyal to someone.
Vx: dy: LoyalTo(x,y)

7. People only try to assassinate rulers they aren't loyal to.
Vx: Vy: Person(x) ” Ruler(y) ” TryAssassinate(x,y) —=LoyalTo(x,y)]

8. Marcus tried to assassinate Caesar.
TryAssassinate(Marcus, Caesar)

9. All men are people.
vx: Men(x) — People(x)

Resolution by Refutation

Problem Statement:

1. Ravi likes all kind of food.

2. Apples and chicken are food

3. Anything anyone eats and is not killed is food
4. Ajay eats peanuts and is still alive

5. Rita eats everything that Ajay eats.

Prove by resolution that Ravi likes peanuts using

resolution.

Step 1: Converting the given statements into
Predicate/Propositional Logic

i. Vx : food(x) = likes (Ravi, x)

ii. food (Apple) ” food (chicken)

iii. Va : Vb: eats (a, b) A killed (a) - food (b)
iv. eats (Ajay, Peanuts) » alive (Ajay)

v. YV : eats (Ajay, c) = eats (Rita, c)

vi. Vd : alive(d) = ~killed (d)

vii. Ye: ~killed(e) - alive(e)

Conclusion: likes (Ravi, Peanuts)

Step 2: Convert into CNF

i. “food(x) v likes (Ravi, x)

ii. Food (apple)

iii. Food (chicken)

iv. ~ eats (a, b) v killed (a) v food (b)
v. Eats (Ajay, Peanuts)

vi. Alive (Ajay)

vii. ~eats (Ajay, c) V eats (Rita, c)
viii. ~alive (d) v ~ killed (d)

ix. Killed (e) v alive (e)
Conclusion: likes (Ravi, Peanuts)

Step 3: Negate the conclusion
~ likes (Ravi, Peanuts)
Step 4: Resolve using a resolution tree

~ likes (Rawi, Peanuts)-food(x) v likes (Ravi, x)

X | peanuts
~food (peanuts) ~ eats (a. b) v kulled () v food (b)

b peanuts

~eats (1, illed (a) (Ajay, peanuts)
\ ﬂ‘”

Killed (Apy) <alive(d) v ~kilkd (d)

/sw-y
~alhve (A\ / (Agy)

Forward Chaining and backward chaining in Al

In artificial intelligence, forward and backward chaining is one of
the important topics, but before understanding forward and
backward chaining lets first understand that from where these two
terms came.

Inference engine:

The inference engine is the component of the intelligent system in
artificial intelligence, which applies logical rules to the knowledge
base to infer new information from known facts. The first
inference engine was part of the expert system. Inference engine
commonly proceeds in two modes, which are:

1.Forward chaining

2. Backward chaining

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which
enables knowledge base to use a more restricted and efficient
inference algorithm.

Logical inference algorithms use forward and backward chaining
approaches, which require KB in the form of the first-order definite
clause.

Definite clause: A clause which is a disjunction of literals with exactly
one positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most
one positive literal is known as horn clause. Hence all the definite
clauses are horn clauses.

Example: (- p V- q V k). It has only one positive literal k.

It is equivalenttop A q = k.

A. Forward Chaining:

Forward chaining is also known as a forward deduction or forward
reasoning method when using an inference engine.

Forward chaining is a form of reasoning which start with atomic
sentences in the knowledge base and applies inference rules (Modus
Ponens) in the forward direction to extract more data until a goal is
reached.

The Forward-chaining algorithm starts from known facts, triggers all
rules whose premises are satisfied, and add their conclusion to the
known facts. This process repeats until the problem is solved.

Properties of Forward-Chaining:

*|t is a down-up approach, as it moves from bottom to top.

*It is a process of making a conclusion based on known facts or
data, by starting from the initial state and reaches the goal state.
*Forward-chaining approach is also called as data-driven as we
reach to the goal using available data.

*Forward -chaining approach is commonly used in the expert
system, such as CLIPS, business, and production rule systems.

Example:

"As per the law, it is a crime for an American to sell
weapons to hostile nations. Country A, an enemy
of America, has some missiles, and all the missiles
were sold to it by Robert, who is an American

citizen.”

Prove that "Robert is criminal."

Facts Conversion into FOL:

It is a crime for an American to sell weapons to hostile nations.
(Let's say p, g, and r are variables)

American (p) A weapon(q) A sells (p, q, r) A hostile(r) >
Criminal(p) ...(1)

Country A has some missiles.
?p Owns(A, p) A Missile(p).

It can be written in two definite clauses by using Existential
Instantiation, introducing new Constant T1.

Owns(A, T1) ... (2)

Missile(T1) (3)

All of the missiles were sold to country A by Robert.

Missiles(p) A Owns (A, p) = Sells (Robert, p, A)

Missiles are weapons.
Missile(p) » Weapons (p) (5)

Enemy of America is known as hostile.
Enemy(p, America) >Hostile(p) (6)

Country A is an enemy of America.
Enemy (A, America) (7)

Robert is American
American(Robert). (8)

Forward chaining proof:

Step-1:
In the first step we will start with the known facts
and will choose the sentences which do not have

implications, such as:

American(Robert), Enemy(A, America),
Owns(A, T1), and Missile(T1).

All these facts will be represented as below.

‘.ﬂ.mericaﬂ (Robert) H Missile (T1) \ ‘ Owns (A T1) \ ‘ Enemy (A, America) \

Step-2:
At the second step, we will see those facts which infer from
available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the
first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1},

so Sells (Robert, T1, A) is added, which infers from the conjunction
of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is
added and which infers from Rule-(7).

Weapons(T1) | |Sells (Robert, T1, Al

Hostile(A)

‘American (Robert) \

Missile (T1)

Owns (A, T1)

Enemy (A, America)

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the
substitution {p/Robert, q/T1, r/A}, so we can add
Criminal(Robert) which infers all the available facts. And hence we
reached our goal statement.

Criminal (Robert)

Weapons(T1) Sells (Robert, T1, A) Hostile(A)

Missile (T1) Owns (A,T1)

‘ American (Robert) \

Enemy (A, America)

B. Backward Chaining:

Backward-chaining is also known as a backward deduction or
backward reasoning method when using an inference engine. A
backward chaining algorithm is a form of reasoning, which starts
with the goal and works backward, chaining through rules to find
known facts that support the goal.

Properties of backward chaining:

|t is known as a top-down approach.
*Backward-chaining is based on modus ponens inference
rule.

*In backward chaining, the goal is broken into sub-goal or
sub-goals to prove the facts true.

It is called a goal-driven approach, as a list of goals
decides which rules are selected and used.

*Backward -chaining algorithm is used in game theory,
automated theorem proving tools, inference engines,
proof assistants, and various Al applications.

*The backward-chaining method mostly used a depth-first
search strategy for proof.

Example:

In backward-chaining, we will use the same above example, and
will rewrite all the rules.

American (p) A weapon(q) A sells (p, q, r) A hostile(r) >
Criminal(p) ...(1)

Owns(A, T1) ... (2)
Missile(T1)

Missile(p) » Weapons(p) = (5)
Enemy(p, America) Hostile(p) = (6)
Enemy (A, America) = (7)
American(Robert). (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which
is Criminal(Robert), and then infer further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact,
we will infer other facts, and at last, we will prove those facts true.
So our goal fact is "Robert is Criminal," so following is the

predicate of it.

Criminal (Robert)

Step-2:

At the second step, we will infer other facts form goal fact
which satisfies the rules. So as we can see in Rule-1, the goal
predicate Criminal (Robert) is present with substitution
{Robert/P}. So we will add all the conjunctive facts below the
first level and will replace p with Robert.

Here we can see American (Robert) is a fact, so it is proved
here

Criminal (Robert)

{ Robert/p}

American {Robert) VWeapon (q) Sells (Robert q,r) Hostile(r)

{3

Step-3:

At step-3, we will extract further fact Missile(q) which infer from
Weapon(q), as it satisfies Rule-(5). Weapon (q) is also true with
the substitution of a constant T1 at q.

Criminal (Robert)

{ Robert/p}

American (Robert) VWeapon (q) Sells (Robert, T1,r) Hostile(r)

{3

Missile (q)

{ q/T1}

Step-4:

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form
Sells(Robert, T1, r) which satisfies the Rule- 4, with the
substitution of A in place of r. So these two statements are

proved here.

Criminal (Robert)

{ Robert/p}

American (Robert) Weapon (q) Sells (Robert, T1.1) Hostile(r)
3 /\
Missile (q) Missile (T1) Owns(A T1)
{ g/T1] I {3}

Step-5: we can infer the fact Enemy(A,
America) from Hostile(A) which satisfies Rule- 6. And hence all the
statements are proved true using backward chaining

Criminal (Robert)

American {Robert) VWeapon (q) Sells (Robert, T1.1) Hostile{A)
- / o
Missile (q) Missile (T1) Owns(A,T1) Enemy (A America)

{am} i ¥ { { 3

Probabilistic reasoning in Artificial intelligence

Uncertainty:

Till now, we have learned knowledge representation using first-
order logic and propositional logic with certainty, which means
we were sure about the predicates.

With this knowledge representation, we might write A-B,
which means if A is true then B is true,

Consider a situation where we are not sure about whether A is
true or not then we cannot express this statement, this situation
is called uncertainty.

So to represent uncertain knowledge, where we are not sure
about the predicates, we need uncertain reasoning or
probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to
occur in the real world.

*Information occurred from unreliable sources.
*Experimental Errors

*Equipment fault

*Temperature variation

*Climate change.

Probabilistic reasoning:

*Probabilistic reasoning is a way of knowledge representation
where we apply the concept of probability to indicate the
uncertainty in knowledge.

*In probabilistic reasoning, we combine probability theory with
logic to handle the uncertainty.

*We use probability in probabilistic reasoning because it provides a
way to handle the uncertainty that is the result of someone's
laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty
of something is not confirmed, such as "It will rain today,"
"behavior of someone for some situations," "A match between
two teams or two players." These are probable sentences for
which we can assume that it will happen but not sure about it, so
here we use probabilistic reasoning.

Need of probabilistic reasoning in Al:

*When there are unpredictable outcomes.

*When specifications or possibilities of predicates
becomes too large to handle.

*When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve
problems with uncertain knowledge:

*Bayes' rule

*Bayesian Statistics

Probability:

Probability can be defined as a chance that an uncertain
event will occur. It is the numerical measure of the likelihood
that an event will occur. The value of probability always
remains between 0 and 1 that represent ideal uncertainties.

0= P(A) =1, where P(A) is the probability of an event A.
P(A)} = 0, indicates total uncertainty in an event A.

P{A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

Number of desired outcomes

Probability of occurrence =
Total number of outcomes

o P(-A) = probability of a not happening event.

o P(-A) + P(A) = 1.

Event: Each possible outcome of a variable is called

an event.
Sample space: The collection of all possible events is

called sample space.

Random variables: Random variables are used to
represent the events and objects in the real world.

Prior probability: The prior probability of an event is
probability computed before observing new information.

Posterior Probability: The probability that is calculated
after all evidence or information has taken into account. It
is @a combination of prior probability and new information.

Conditional probability:

Conditional probability is a probability of occurring an
event when another event has already happened.
Let's suppose, we want to calculate the event A when
event B has already occurred, "the probability of A
under the conditions of B", it can be written as:
P(A/B)

Where P(AAB)= Joint probability of a and B
P(B)= Marginal probability of B.

If the probability of A is given and we need to find the
probability of B, then it will be given as:

If the probability of A is given and we need to find the
probability of B, then it will be given as:

It can be explained by using the below Venn diagram,
where B is occurred event, so sample space will be
reduced to set B, and now we can only calculate event A
when event B is already occurred by dividing the
probability of P(AAB) by P(B).

Bayes' theorem in Artificial intelligence

Bayes' theorem:

Bayes' theorem is also known as Bayes' rule, Bayes' law, or Bayesian
reasoning, which determines the probability of an event with
uncertain knowledge.

In probability theory, it relates the conditional probability and
marginal probabilities of two random events.

Bayes' theorem was named after the British mathematician Thomas
Bayes. The Bayesian inference is an application of Bayes' theorem,
which is fundamental to Bayesian statistics.

It is a way to calculate the value of P(B|A) with the knowledge of
P(A|B).

Bayes' theorem allows updating the probability prediction of an
event by observing new information of the real world.

Example: If cancer corresponds to one's age then by using Bayes'
theorem, we can determine the probability of cancer more
accurately with the help of age.

Bayes' theorem can be derived using product rule and conditional
probability of event A with known event B:

As from product rule we can write:

P(A A B)= P(A|B) P(B) or
Similarly, the probability of event B with known event A:
P(A A B)= P(B|A) P(A)

Equating nght hand side of both the equations, we will get:

P(B|A) P(A)

P(AIB) = P(B)

..{a)

The above equation (a) is called as Bayes' rule or Bayes' theorem.
This equation is basic of most modern Al systems for probabilistic
inference.

F(B|A) P{A)
PiB)

P(A|B) =

*P(A|B) is known as posterior, which we need to calculate, and it
will be read as Probability of hypothesis A when we have occurred
an evidence B.

*P(B|A) is called the likelihood, in which we consider that
hypothesis is true, then we calculate the probability of evidence.

*P(A) is called the prior probability, probability of hypothesis
before considering the evidence

*P(B) is called marginal probability, pure probability of an
evidence.

In the equation (a), in general, we can write P (B) =
P(A)*P(B|Ai), hence the Bayes' rule can be written as:

P(Aj)+P(B|aj)

P(A|B) =
e T X P(Aj)+P(B|A;)

Where A, A,, A;,........ , A, is a set of mutually exclusive
and exhaustive events.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term P(B|A)
in terms of P(A|B), P(B), and P(A).

This is very useful in cases where we have a good
probability of these three terms and want to determine
the fourth one.

Suppose we want to perceive the effect of some unknown

cause, and want to compute that cause, then the Bayes'
rule becomes:

Example-1:

Question: what is the probability that a patient has
diseases meningitis with a stiff neck?

Given Data:

A doctor is aware that disease meningitis causes a
patient to have a stiff neck, and it occurs 80% of the
time. He is also aware of some more facts, which are
given as follows:

The Known probability that a patient has meningitis
disease is 1/30,000.

The Known probability that a patient has a stiff neck is
2%.

Let a be the proposition that patient has stiff neck and
b be the proposition that patient has meningitis. , so
we can calculate the following as:

P(a|lb) = 0.8
P(b) = 1/30000
P(a)= .02
P(bla) = PALP® _ %8*Goess) _ 4 901333333,
Pla) 0.02

Hence, we can assume that 1 patient out of 750
patients has meningitis disease with a stiff neck.

Applying Bayes' rule:

Bayes' rule allows us to compute the single term
P(B|A) in terms of P(A|B), P(B), and P(A).

This is very useful in cases where we have a good
probability of these three terms and want to
determine the fourth one.

Suppose we want to perceive the effect of some
unknown cause, and want to compute that cause,
then the Bayes' rule becomes:

P(effect|cause) P(cause)
Pleffect)

P(cause | effect) =

Example-2:

Question: From a standard deck of playing cards, a single card is drawn.
The probability that the card is king is 4/52, then calculate posterior
probability P(King|Face), which means the drawn face card is a king

card.

Bayesian Belief Network in artificial intelligence

Bayesian belief network is key computer technology for
dealing with probabilistic events and to solve a problem
which has uncertainty. We can define a Bayesian
network as:

"A Bayesian network is a probabilistic graphical model
which represents a set of variables and their conditional
dependencies using a directed acyclic graph.”

It is also called a Bayes network, belief network,
decision network, or Bayesian model.

Bayesian networks are probabilistic, because these networks are
built from a probability distribution, and also use probability
theory for prediction and anomaly detection.

Real world applications are probabilistic in nature, and to
represent the relationship between multiple events, we need a
Bayesian network. It can also be used in various tasks

including prediction, anomaly detection, diagnostics, automated
insight, reasoning, time series prediction, and decision making
under uncertainty.

Bayesian Network can be used for building models from data and
experts opinions, and it consists of two parts:

Directed Acyclic Graph
Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve
decision problems under uncertain knowledge is known as
an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

Node

N
.

Each node corresponds to the random variables, and a variable
can be continuous or discrete.

Arc or directed arrows represent the causal relationship or
conditional probabilities between random variables. These
directed links or arrows connect the pair of nodes in the graph.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

Node

N
.

These links represent that one node directly influence the other
node, and if there is no directed link that means that nodes are
independent with each other
In the above diagram, A, B, C, and D are random variables
represented by the nodes of the network graph.
If we are considering node B, which is connected with node
A by a directed arrow, then node A is called the parent of
Node B.
Node Cis independent of node A.

The Bayesian network has mainly two components:
Causal Component
Actual numbers

Each node in the Bayesian network has condition probability
distribution P(X; | Parent(X.)), which determines the effect of
the parent on that node.

Bayesian network is based on Joint probability distribution and
conditional probability. So let's first understand the joint
probability distribution:

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a
different combination of x1, x2, x3.. xn, are known as Joint
probability distribution.

P[x,, X,, X,....., X,], it can be written as the following way in terms
of the joint probability distribution.

= P[x;| Xy, Xgpeeeeey X, JP[Xy, Xgpeeeee, X,]

= P[X;| X5 Xgpeeeeey X, JPDG | Xgpeeenn, X)ooo P[X 1 | X IP[X]

Explanation of Bayesian network:
Let's understand the Bayesian network through an example by
creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to
detect burglary. The alarm reliably responds at detecting a
burglary but also responds for minor earthquakes. Harry has two
neighbors David and Sophia, who have taken a responsibility to
inform Harry at work when they hear the alarm. David always calls
Harry when he hears the alarm, but sometimes he got confused
with the phone ringing and calls at that time too. On the other
hand, Sophia likes to listen to high music, so sometimes she
misses to hear the alarm. Here we would like to compute the
probability of Burglary Alarm.

Problem:
Calculate the probability that alarm has sounded, but there is neither a

burglary, nor an earthquake occurred, and David and Sophia both called the
Harry.

Solution:

The Bayesian network for the above problem is given below. The network
structure is showing that burglary and earthquake is the parent node of the
alarm and directly affecting the probability of alarm's going off, but David and
Sophia's calls depend on alarm probability.

The network is representing that our assumptions do not directly perceive the
burglary and also do not notice the minor earthquake, and they also not confer
before calling.

The conditional distributions for each node are given as conditional probabilities
table or CPT.

Each row in the CPT must be sum to 1 because all the entries in the table
represent an exhaustive set of cases for the variable.

In CPT, a boolean variable with k boolean parents contains 2* probabilities.
Hence, if there are two parents, then CPT will contain 4 probability values

List of all events occurring in this network:
Burglary (B)

Earthquake(E)

Alarm(A)

David Calls(D)

Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D,
S, A, B, E], can rewrite the above probability statement using joint probability
distribution:

P[D,S,A,B,E]=P[D | S, A, B, E]. P[S, A, B, E]

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

=P[D| A].P[S| A, B,E]. P[A, B, E]

=P[D | A]. P[S | A]. P[A] B, E]. P[B, E]

=P[D | A].P[S | A]. P[A]| B, E]. P[B |E]. P[E]

0,002

0,998
P(D=T) | P{D=F)
0.91 0.09
0.05 0.95

0,001
Burglary B E Earthquake ——
\A / B L P(A=T) | P(A=F)
T T 0.94 0.06
Alarm T F 0.95 0.04
F T 0.69 0.69
F F 0.999 | 0.999
D S
_ P(s=T) | P(S=F)
: Sophia
David Calls calls 0.75 0.25
0.02 0.98

Let's take the observed probability for the Burglary and earthquake
component:

P(B= True) = 0.002, which is the probability of burglary.

P(B= False)=0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor earthquake
P(E= False)= 0.999, Which is the probability that an earthquake not
occurred.

Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

True True 0.54 0.06
True False 0.95 0.04
False True 0.31 0.69
False False 0.001 0.999

Conditional probability table for David Calls:

The Conditicnal probability of David that he will call depends on the probability of Alarm.

True 0.91 0.05

False 0.05 0.95

Conditional probability table for Sophia Calls:

The Conditicnal probability of Sophia that she calls is depending on its Parent Node "Alarm.”

True 0.75 0.25

False 0.02 0.98

Problem:

Calculate the probability that alarm has sounded, but there is neither a
burglary, nor an earthquake occurred, and David and Sophia both called the
Harry.

From the formula of joint distribution, we can write the problem
statement in the form of probability distribution:

P(S,D, A, -B,-E) =P (S|A) *P (D|A)*P (A|-B "~ -E) *P (-B) *P
(=E).

=0.75* 0.91* 0.001* 0.998*0.999

= 0.00068045.

Hence, a Bayesian network can answer any query about the
domain by using Joint distribution.

Unit 4

Total-Order Planning

*Forward/backward state-space searches are
forms of totally ordered plan search

*explore only strictly linear sequences of
actions, directly connected to the start or goal

* cannot take advantages of problem
decomposition

2/20/2021 HARINATH-IT-MGIT

Partial-Order Planning (POP) - Idea:

* Works on several subgoals independently
* Solves them with subplans
* Combines the subplans

* Flexibility in ordering the subplans

* Least commitment strategy:
* delaying a choice during search

* Example, leave actions unordered, unless they must be
sequential

2/20/2021 HARINATH-IT-MGIT

POP Example - Putting on a pair of shoes:

* Goal(RightShoeOn A LeftShoeOn)
* Init()

* Action: RightShoe
* PRECOND: RightSockOn
* EFFECT: RightShoeOn

* Action: RightSock
* PRECOND: None
* EFFECT: RightSockOn

* Action:LeftShoe
* PRECOND: LeftSockOn
* EFFECT: LeftShoeOn

* Action: LeftSock
* PRECOND: None
* EFFECT: LeftSockOn

2/20/2021 HARINATH-IT-MGIT

The partial-order plan - The shoes and socks

problem

* A partial-order plan for putting on shoes and socks, and the six
corresponding linearizations into total-order plans

Partial-Order Plan: Total-Order Plans:

Start

Start
/ \ i
Sock
Left Right
Sock Sock *

| s
LeftSockOn RightSockOn * * *

Lett Right
Shoe Shoe Shoe Shoe Sock

\ / 1 1
Left Right
Shoe Shoe Shoe Shoe

LeftShoeOn, RightShoeOn { 1 1 {

Finish Finish Finish Finish Finish Finish

2/20/2021 HARINATH-IT-MGIT

How to Define Partial Order Plan?

* A set of actions, that make up the steps of the plan

* A set of ordering constrain 4< B
* A before B

o Aset of causal links: 4——B

* Aachieves P for B RightSock —2£%%, RiohtShoe

* May be conflicts if C has the effect of —P and if C comes after A
and before B

* A set of open preconditions:

* A precondition is open, if it is not achieved by some action in the
plan

2/20/2021 HARINATH-IT-MGIT

The Initial Plan

* |nitial plan contains:

* Start:

* PRECOND: none

* EFFECT: Add all propositions that are initially true
* Finish:

* PRECOND: Goal state

* EFFECT: none

» Ordering constraints; Start < Finish Finish
* Causal links: {}

* Open preconditions:
* {preconditions of Finish}

LeftShoeOn, g RightShoeQn

2/20/2021 HARINATH-IT-MGIT

Next...

* Successor function

* Arbitrarily picks one open precondition p on an action B and
generates a successor plan, for every possible consistent way
of choosing an action A, that achieves p

* Consistency:

* Causal link 4—2>B and the ordering constraint are
added () (4<B Start< A4 A< Finish)

* Resolve conflict: add B<Cor (< 4

* Goal test:
* There are no open preconditions

2/20/2021 HARINATH-IT-MGIT

Example: Final Plan

* The final plan has the following components:

* Actions: {RightSock, RightShoe, LeftSock, LeftShoe, Start,
Finish}

* Orderings: {RightSock ¢ RightShoe, LeftSock ¢ LeftShoe}

* Open preconditions: {}

* Links: RightSock —2£5%_ RiahtShoe
LeftSock —=2%2 s] efiShoe
RightShoe—2£%¢%_, Einish

LeftShoe—=2%%"_, Einis

2/20/2021 HARINATH-IT-MGIT

Example Algorithm for POP

* POP: A sound, complete partial order planner using
STRIPS representation

function POP(initial, goal, operators) returns plan
plan € MAKE-MINIMAL-PLAN(initial, goal)
loop do
if SOLUTION? (plan) then return plan
S,eeqrC € SELECT-SUBGOAL (plan)
CHOOSE-OPERATOR (plan,operators, S,...,C)
RESOLVE-THREATS (plan)

end

where: *cis a precondition of a step S,

*RESOLVE-THREATS: orders steps as needed to ensure
intermediate steps don't undo preconditions needed by other steps

2/20/2021 HARINATH-IT-MGIT

POP Example - Changing a flat tire

* Consider the problem of changing a flat tire.

* The goal is to have a good spare tire, properly mounted onto the car’s
axle,

* The initial state has a flat tire on the axle and a good spare tire in the
trunk.

* There are just four actions:
* removing the spare from the trunk,
* removing the flat tire from the axle,
* putting the spare on the axle, and
* leaving the car unattended overnight.

* We assume that the car is in, particularly bad neighborhood, so that
the effect of leaving it overnight is that the tires disappear.

2/20/2021 HARINATH-IT-MGIT

2/20/2021

POP Example: Flat Tire

Init(At(Flat, Azle) A At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(Spare, Trunk).

PRECOND: At(Spare, Trunk)

EFFECT: = At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat, Azle).

PRECOND: At(Flat, Azle)

EFFECT. = At(Flat, Azle) A At(Flat, Ground))
Action(PutOn(Spare, Azle),

PRECOND: At(Spare, Ground) A - At(Flat, Azle)

EFFECT: -~ At(Spare, Ground) A At(Spare, Azlc))
Action(Leave Qvernight,

PRECOND:

EFFECT: = At(Spare, Ground) A - At(Spare, Azle) A - At(Spare, Trunk)

A = At(Flat, Ground) A = At(Flat, Azle))

HARINATH-IT-MGIT

12

POP Algorithm : The sequence of events

» Start : At (Spare,Trunk) * At (Flat, Axle) (init)
* Finish : with precondition At (Spare, Axle). (that is goal)
* Sequence of functions :

* 1. Pick the only open precondition, At (Spare, Axle) of Finish. Choose
the only applicable action, PutOn(Spare, Axle).

* 2. Pick the At (Spare, Ground) precondition of PutOn(Spare, Axle). The
only applicable action, to achieve it is Remove(Spare,Trunk)

Al(Spare, Trunk) Remove(Spare.Trunk)\

Af(Spare, Trunk) At{Spare, Ground)
Af(Flat Axle) —Al(Flat Axle)

PutOn(Spare,Axle) F»-Af(Spare.Axe)| Finish

2/20/2021 HARINATH-IT-MGIT

* 3, Pick the : At (Flat, Axle) precondition of PutOn(Spare, Axle)

At(Spare, Trunk)| Remove(Spare, Trunk)

f

!

At(Spare, Trunk) At(Spare, Ground)

I/
ANFiat Axke)) PutOn(Spare Axle) H-At(Spare Axle)

] —At{Flat Axie)
/

/
-.AﬂFfaf Axle)
L —AtlFlat, Ground)
LeaveOvernight ”“'AﬂSpare Axle)
—At(Spare,Ground)
—At(Spare, Trunk)

Figure 11.9 The plan after choosing LeaveOuvernight as the action for achieving
- At(Flat, Azle). To avoid a conflict with the causal link from Remove(Spare, Trunk)
that protects At(Spare, Ground), LeaveOvernight is constrained to occur before
Remove(Spare, Trunk). as shown by the dashed arrow.

2/20/2021

HARINATH-IT-MGIT

*4. The only remaining open precondition at this point is
the At (Spare,Trunk), precondition of the action
Remove(Spare,Trunk)

* 5. Consider again the : At (Flat, Axle) precondition of
PutOn(Spare, Axle). This time, we choose
Remove(Flat, Axle).

*6. Once again, pick the At (Spare, Tire) precondition of
Remove(Spare,Trunk) and choose Start to achieve it. This
time there are no conflicts.

*7. Pick the At (Flat, Axle) precondition of
Remove(Flat, Axle), and choose Start to achieve it.

2/20/2021 HARINATH-IT-MGIT

At(Spare, Trunk)

At(Spare, Trunk)

At(Flat, Axle)

Remove(Spare, Trunk) \

At(Spare,Ground)
—Al(Flat Axle)

\

Al(Flat Axle)

Remove(Flat,Axle) /

PutOn(Spare Axle)

i Af(Spare Axle)

Finish

2/20/2021

Figure 11.10 The final solution to the tire problem. Note that Remove(Spare, Trunk)
and Remove(Flat, Azle) can be done in either order, as long as they are completed before
the PutOn(Spare, Azle) action.

HARINATH-IT-MGIT

PLANNING AND ACTING IN THE REAL WORLD:

* Time, Schedules and Resources:

Time is of the essence in the general family of
applications called job shop scheduling . Such tasks
require completing a set of jobs, each of which gonsists
of a sequence of actions , where each action has a given
duration and might require some resources. The

problem is to determine a schedule that minimizes the
total time required to complete all the jobs, while
respecting the resource constraints.

PLANNING AND ACTING IN THE REAL WORLD:

* Example of job shop scheduling problem:

This is a highly simplified automobile assembly problem.
There are two jobs: assembling cars C; and C,.Each job
consists of three actions: adding the engine, adding the
wheels, and inspecting the results. The engine must be
put in first (because having the front wheels on would

inhibit access to the engine compartment) and of course
the inspection must be done last.

PLANNING AND ACTING IN THE REAL WORLD:

[nit(Chassis(C'y) ('hmm-('n
A Engine(Ey,Cy, 30) A Engine(Es, (. 60)
A ”hlrf.\‘.“:.{].5(},1 Wheels(Ws, (2, 13))
Goal (Done(Cy) A Done(C5))

Action(AddE ngmefec),
PRECOND: Engine(e,c,d) A Chassis (¢)A ~Engineln(c),
EFFECT; Engineln(e) A Duration{d))
Action(AddWheels (w, c),
PRECOND: Wheels(w,c.d} l('huw\'lt‘,’.lEngw. Infcl
ErrecT: WheelsOnle) A Duration(d))
Action(Inspect(c) PRECOND: Engineln(c) A WheelsOn(c) A Chassis(c),
EFFECT: Done(c)A Duration(10))

Figure 12.1 A job shop scheduling problem for assembling two cars. The notation
Duration(d) means that an action takes d minutes to execute f“u”“ £y, ('y,60) means
that F£, 1s an engine that fits into chassis (' and takes 60 minutes to install

| ; : | D305
£ Type here to search :) A D E 7) NG 17-02-201 Eﬂ

PLANNING AND ACTING IN THE REAL WORLD:

* Figure 12.2 shows the solution that the partial-order
planner POP would come up with.

* To make this a scheduling problem rather than a
planning problem, we must now determine when each
action should begin and end, based on the durations of

actions as well as their ordering.

* The notation Duration(d) in the effect of an action
(where d must be bound to a number) means that the
action takes d minutes to complete.

PLANNING AND ACTING IN THE REAL WORLD:

(0,15)
AogEngne |
30

PLANNING AND ACTING IN THE REAL WORLD:

* Apply critical path method(CPM) to determine the
possible start and end times of each action i.e., it
determines the duration of the entire plan.

* In the before figure the critical path is shown with bold
lines.

 Slack time is the difference between the earliest
possible start time (ES) and latest possible start
time(LS).i.e., LS = ES = slack.

* For the before figure ,the whole plan will take 85
minutes.

PLANNING AND ACTING IN THE REAL WORLD:

* Scheduling with resource constraints:

> Extending the engine assembly problem by including 3
resources :

1.An engine hoist for installing engines.

2.A wheel station for putting on the wheels
3.Two inspectors

> s0,now this solution takes 115 minutes which is longer

than time taken by a schedule without resource
constraints.

> Aggregation groups individual objects into quant|t|es
when the objects are all indistinguishable with respect to

the purpose at hand. For example, resource Inspectors(2)
is represented rather than Inspector(l,) and Inspector(l,).

PLANNING AND ACTING IN THE REAL WORLD:

+ Example: (BuildHouse problem)

Action(BuyLand, PRECOND: Money, EFFECT: Land A~ Money)
Action(GetLoan, PRECOND: GoodCredit, EFFECT: Money A Morigage)
Action(BuildHouse. PRECOND: Land. EFFECT: House)

Action(GetPermil, PRECOND: Land, EFFeCT: Permit)

Action(Hire But Errecr: Contract)

Action(Construction, PRECOND: Permil 4 Contract,
EFFECT: HouseBuilt A = Permi)

Action(PayBuilder, PRECOND: Money 4 HouseBuilt,
EFFECT .\fmh'.'. A House A = Contract)

Decompose| BuildHouse,
Plan(STEPS: { S, : GetPermit, S, : HireBuilder,
.“\"_. a Construction, "“ . Puuﬂinfrf'f }
ORDERINGS: [Start < Sy < Sy < Sy < Finish, Start < Sz < S},

'l’a.m“,- ¥

Links: {Start 222 S, Start "% S4,
S Pamit 5, §, Pninet 5y, §; Heuesvir g,

) -
2 - o

Sy Howse Finish, Sy ™ 224 Finish}))

Figure 12.6 Action descniptions for the house-building problem and a detailed decompo-
sition for the BuildHouse action. The descriptions adopt a simplified view of money and an
optimstic view of builders

PLANNING AND ACTING IN THE REAL WORLD:

@il& House
ouse

S

! !GGCWMS 10

Finish

Figure 12.5 One possible decomposition for the BuildHouse action

PLANNING AND ACTING IN THE REAL WORLD:

* Properties of HTN:

1.Decomposition should be a correct implementation of
an action.
2.A decomposition is not necessarily unique.

3.Performs two other forms of information hiding:

(a).The high-level descriptjon completely ignores all

internal effects of the decompositions.
(b).The high-level description does not specify the
intervals “inside” the activity during which the

high-level preconditions are effects must hold.

PLANNING AND ACTING IN THE REAL WORLD:

» Modifying the planner for decompositions:
> For any Decompose(a, d) method from the plan library

such that aand a' unify with substitution O, replacing
a' with d' = SUBST(G, d).

> The decomposition d is selected from Figure 12.5, and

BuildHouse is replaced by this decomposition in
Figure 12.7

PLANNING AND ACTING IN THE REAL WORLD:

Money
duy Land Buid

“l‘L\Q

Construction

GoodCrodt Get Loan

Figure 127 Decomposition of a high-level action withn an existing plan. The
BuildHouse action is replaced by the decomposition from Figure 12.5. The extemal precon-
dition Land 1s supplied by the existing causal link from BuyLand. The extemal precondition
Money remains open after the decomposition step, so we add a new action, GetLoan.

PLANNING AND ACTING IN THE REAL WORLD:

The following steps are performed in decomposition:

1.Implement subtask sharing i.e.,action a’ is removed
from P.
2.Hook up the ordering constraints for a’ in the
original plan to the stepsin d'.

3.Hook up causal links.

PLANNING AND ACTING IN THE REAL WORLD:

* Bad news of HTN: pure HTN planning is undecidable
eventhough the underlined state space is finite due to
recursive decomposition actions.

We can resolve the recursive decomposition problem by
3 ways:

1.Rule out recursion.

2.Bound the length of relevant solutions.

3. Adopt Hybrid approach that combines HTN

with POP.

PLANNING AND ACTING IN THE REAL WORLD:

Example for HTN with POP planner:
(The Gift of the Magi problem)

Give Comb
(On Cregt)

(On Credt)

GiveChan |~

Vak Give
¢ | Chain

(b) Abstract Inconsistent Plan

weich! Deliver

=

Walch_ ™~

Deliver

Hawr Hair

(¢) Decompaositionof (b) into a Consistent Solution

E Watch

=1 Owe{ Waich)

/\2 Finish

1 Hair

w» Owe(Hain

PLANNING AND ACTING IN THE REAL WORLD:

* Explanation:
The Gift of the Magi problem,

> Part (a) shows the problem: A poor couple has only two
prized possessions-he a gold watch and she her beautiful
long hair. Each plans to buy a present to make the other

happy. He decides to trade his watch to buy a silver comb
for her hair, and she decides to sell her hair to get a gold

chain for his watch.

>|n (b) the partial plan is inconsistent, because there is no
way to order the "Give Comb" and "Give Chain"abstract
steps without a conflict. (We assume that the "Give Comb"
action has the precondition Hair, because if the wife
doesn't have her long hair, the action won't have the
intended effect of making her happy, and similarly for the
"Give Chain" action.)

PLANNING AND ACTING IN THE REAL WORLD:

> In (c) we decompose the "Give Comb" step with an
"Iinstallment plan” method. In the first step of the
decomposition, the hushand takes possession of the comb
and gives it to his wife, while agreeing to deliver the watch
in payment at a later date.In the second step, the watch is
handed over and the obligation is fulfilled. A similar

method decomposes the "Give Ch&in" step. As long as both
giving steps are ordered before the delivery steps, this
decomposition solves the problem.

PLANNING AND ACTING IN THE REAL WORLD:

* Planningand Acting in Nondeterministic Domains:

" The classical planning domains (or) deterministic domains
are fully observable & static . In it action descriptions are
correct and complete . An agent can plan first and then
executes the plan with its eyes closed.

" |n nondeterministic domains, agents have to deal with
incomplete and incorrect information.

>Incompletenessis due to partially observable,
nondeterministic or both.
>Incorrectness is due to mismatch between real world

model and actual model

PLANNING AND ACTING IN THE REAL WORLD:

* The degree of indeterminismis measured with either
bounded domains or unbounded domains.

* To handle the indeterminism there are two indeterminacy
bounded planning methods & two indeterminacy
unbounded planning methods.

* Bounded planning methods:
1.Sensorless planning.

2.Conditional planning.

* Unbounded planning methods:
1.Execution Monitoring and Re-gslanning.

2.Continuous planning.

PLANNING AND ACTING IN THE REAL WORLD:

* Consider an example to clarify the differences among the
various kinds of agents:The problem s,

Given an initial state with a chair,a table and some cans of
paint with everything of unknown color,achieve the state
where the chair and table have same color.

PLANNING AND ACTING IN THE REAL WORLD:

" As per sensorless planning agent,the solution is to open
any can of paint and apply it to both chair and table ,thus
coercing them to be the same color(even though the agent
doesn’t know what the color is.)

As per conditional planning agent first sense the color of
the chair and table,if they are already the same then the

planis done.If not, sense the labels of the paint cans,if
there is a can that is the same color as one of the
furniture,then apply the paint to the other piece .
Otherwise paint both pieces with any color.

PLANNING AND ACTING IN THE REAL WORLD:

* Areplanning agent could generate the same plan as the
conditional planner, or it could generate fewer branches at
first and fill in the others at execution time as needed. A
conditional planner would just assume that the effect has
occurred once the action has been executed, but a
replanning agent would check for the effect, and if it were

not true (perhaps because the agent was careless and
missed a spot), it could then replan to repaint the spot.

A continuous planning agent, in addition to handling
unexpected events, can revise its plans appropriately if, say,
we add the goal of having dinner on the table, so that the
painting plan must be postponed.

PLANNING AND ACTING IN THE REAL WORLD:

* Sensorless planning:

Also called conformant planning. The sensorless planning
algorithm must ensure that the plan achieves the goal in all
possible circumstances, regardless of the true initial state
and the actual action outcomies.Relieson coercion.

* Example: Vacuum world problem

PLANNING AND ACTING IN THE REAL WORLD:

Figure 3.21 The reachable portion of the belhief state space for the determimistic, Sensor-
less vacuum world. Each shaded box corresponds to a single behef state. At any given point,
the agent is in a particular belief state but does not know which physical state it s in. The
mitial behiel state (complete 1gnorance) 1s the top center box. Actions are represented by
labeled arcs. Self-loops are omiatted for clarity.

PLANNING AND ACTING IN THE REAL WORLD:

* Conditional planning:

* Also called contigency planning.It deals with uncertainity
by checking what is actually happening in the environment
at predetermined points in the plan.

* Constructs conditional plan steps with different branches
for possible contingencies.

1.conditional planning in fully observable environments.

2.conditional planning in partially observable environments.

PLANNING AND ACTING IN THE REAL WORLD:

* Conditional planningin fully observable
environments:

* Full observability means that the agent always knows
the current state.A conditional planning agent handles
nondeterminism by building into the plan conditional steps
that will check the state of the environment to decide what
to do next.The problem is how to construct these
conditional plans.

1.Include actions having disjunctive effects
Action(Left, PRECOND:AtR,EFFE[CT:AtL\/ AtR)

PLANNING AND ACTING IN THE REAL WORLD:

* Example:Letus consider a specific example in the vacuum
world. The initial state has the robot in the right square of a
clean world; because the environment is fuliy observable,
the agent knows the full state description, AtR ACleanL #
CleanR. The goal state has the robot in the left square of a
clean world. “Double Murphy"vacuum cleaner sometimes

deposits dirt when it moves to a clean destination square
and sometimes deposits dirt if Suck is applied to a clean
square.

PLANNING AND ACTING IN THE REAL WORLD:

*To create conditional plans,we need conditional
steps.
syntax:”if <test> then plan_A else plan B.
ex:-"if AtL * Cleanl then Right else Suck.”

* Games against nature tells to find conditional

plans that work regardless of which action

outcomes actually occur.

PLANNING AND ACTING IN THE REAL WORLD:

* Example:Let us consider a specific example in the vacuum
world. The initial state has the robot in the right square of a
clean world; because the environment is fully observable,
the agent knows the full state description, AtR ACleanL A
CleanR. The goal state has the robot in the left square of a

clean world. “Double Murphy"vacuum cleaner sometimes
deposits dirt when it moves to a clean destination square
and sometimes deposits dirt if Suck is applied to a clean
square.

PLANNING AND ACTING IN THE REAL WORLD:

{————-

Suck

e i | iy
2. -1 -.& 7 -9 6 ‘g i 1 ‘:ﬂ' “r 8
GOAL LOOP

Figure 12,9 The first two levels of the search tree for the "double Murphy" vacuum world.
State nodes are OR nodes where some action must be chosen. Chance nodes, shown as circles,
are AND nodes where every outcome must be handled, as indicated by the arc linking the
outgoing branches. The solution is shown in bold lines.

PLANNING AND ACTING IN THE REAL WORLD:

* Asolutionis a subtree that

(1) has a goal node at every leaf,

(2) specifies one action at each of its "state" nodes, and

(3) includes every outcome branch at each of its "chance

nodes.
The solution is shown in bold lines in the figure;
* Finally the search space is defined by AND-OR graph
search.

* The double murphy AND-OR graph algorithm is a recursive
DFS algorithm i.e. if the current state is identical to a state
on the path from the root then it returns with failure.

PLANNING AND ACTING IN THE REAL WORLD:

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(INITIAL-STATE| problem], problem,|))

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if GOAL-TEST| problem|(state) then return the empty plan
if state 1s on path then return failure
for each action, state-set in SUCCESSORS| problem|(state) do
plan«- AND-SEARCH(state_set, problem, [state| path])

if plan # failure then return [action| plan]
return failure

function AND-SEARCH(stale _set, problem, path) returns a conditional plan, or failure
for each s; in state-set do

plan, «+~OR-SEARCH(s;, problem, path)
if plan = failure then return failure
return [if s, then plan, elseif s, then plan, else .. . if s, then plan, -,

else plan,|

Figure 12.10 An algonthm for searching AND-OR graphs generated by nondeterministic
environments. We assume that SUCCESSORS returns a list of actions, each associated with a

set of possible outcomes. The aim is to find a conditional plan that reaches a goal state in all
circumstances.

PLANNING AND ACTING IN THE REAL WORLD:

* The triple murphy algorithm states that there are no longer
any cyclic solutions and AND-OR-GRAPH-SEARCH would
return with failure.

* |t gives a cyclic solution by adding a label to denote some
portion of the plan and using that label later instead of

repeating the plan itself.Thus,our cyclic solution is,
L, : Left, if AtR then L, else if CleanL then [] else Suck]

PLANNING AND ACTING IN THE REAL WORLD:

HI

GOAL

Figure 12.11 The first level of the search graph for the "triple Murphy” vacuum world,
where we have shown cycles explicitly. All solutions for this problem are cyclic plans

L

PLANNING AND ACTING IN THE REAL WORLD:

* Conditional planningin partially observable
environments:

* The agent knows only a certain &mount about the actual
state.This situation can be modelled by considering the initial

state belongs to state set or belief state.

*Suppose that a vacuum-world agent knows that it is in the
right-hand square and that the square is clean, but it cannot
sense the presence or absence of dirt in other squares. Then as
far as it knows it could be in one of two states: the |left-hand
square might be either clean or dirty. This belief state is marked
Ain Figure 12.12.

*The figure shows part of the AND-OR graph for the "alternate

double Murphy" vacuum world, in which dirt can sometimes be
left behind when the agent leaves a clean square.

PLANNING AND ACTING IN THE REAL WORLD:

Cleanl

CleanR

Figure 12,12

m which dirt can sometimes be left behind when the agent leaves a clean square

Pant of the AND—0OR graph for the "altematedouble Murphy™ vacuum world

cannot sense dirt in other squares

I'he agent

PLANNING AND ACTING IN THE REAL WORLD:

= Execution Monitoring and Replanning:

An execution monitoring agent ch__gacks Its percepts to see
whether everything is going according to the plan or not.If
any unanticipated circumstances raises for which agent’s
action descriptions are incorrect,that problem is called as
unbounded indeterminacy.There are 2 kinds of execution
monitoring:

1. Action monitoring, whereby the agent checks the
environment to verify that the next action will work, and

2. Plan monitoring, in which the agent verifies the entire
remaining plan.

PLANNING AND ACTING IN THE REAL WORLD:

* Areplanning agentrepairs the old plan when something
unexpected will happen.

Execution monitoring and Replannihg combinedly can be
applied to both full & partially observable environments

and to a state space,POP and conditional planning
problems.

Example:problem of achieving a chair and table of
matching color, via replanning. The initial state the chair is
blue, the table is green, and there is a can of blue paint and
a can of red paint.

PLANNING AND ACTING IN THE REAL WORLD:

* The problem definition is:

Imt { ('n[(u'-.'_ ('fuljr_ Bhlt’) A (‘(JI()I'(]Uh[(’ Uf’(’t’”}
l_.‘l ("(”“‘f“”.\'('f][(”'(_ B('. Blf‘('} '.’ Pflf”r(.f“’) : [J(\ :' ..
A ContainsColor(RC, Red) A PaintCan{RC)

(fuu!i_ (_-'r}fur‘[Chair.x) A Color(Table.x))
Action(Paint(object,color),
PRECOND: HavePaint(color)
EfFect:Color(object, color))
Action(Open(can),
PRECOND: PaintCan(can) A ContainsColor(can,color
EFrFeCT: HavePaint(color)

The agent's PLANNER should come up with the following plan:
[Start Open(BC'); Paint(Table, Blue),; Finish]

PLANNING AND ACTING IN THE REAL WORLD:

Figure 12.14 Before execution, the plannercomes up with a plan, here called whole-plan,
to get from S to (. The agent exccutes the plan until the point marked E. Before executing
the remaining plan, it checks preconditions as usual and finds that it 1s actually in state ()
rather than state E. It then calls its planning algorithm to come up with repair, which is a
planto get from O to some point P on the original whole-plan. The new plan now becomes
the concatenation of repair and continuation (the resumptionof the onginal whole-plan)

PLANNING AND ACTING IN THE REAL WORLD:

* There are some complications in replanning for partially
observable environments.They are:

1.Things can go long without the agent’s being able
to detect it.
2.checking preconditions could require the

execution of sensing actions.

The solutions for the above problems are:
1.Choose one of the repair plan randomly from
among the set of all possible repair plans.
2.Use learning process for avoiding incorrect action
descriptions.

PLANNING AND ACTING IN THE REAL WORLD:

Figure 12.15 The sequence of states as the continuous planning agent tries to reach the
goal state On(C, D) A On(), B), as shown in (d). The start state i1s (a). At (b), another
agent has interfered, putting D on B. At (c), the agent has executed Move((, D) but has
failed, dropping C' on A instead. It retries Move{C', D), reaching the goal state (d)

Continuous planning agent builds the plan incrementally.
The preconditions and ordering constraints to reach our

goal state is shown in following figures:

PLANNING AND ACTING IN THE REAL WORLD:

OnwC F

Ciear(C) | Move(C,D)
Ontatie(A Y
On{BE
OmCF

oD G

Finish

Move(D,.B)

Figure 12.16 The initial plan constructed by the continuous planning agent. The plan is
indistinguishable, so far, from that produced by a normal partial-order planner

'| Move(C,D)
Ontadie(A) J
OnB.L)
On(C.F) "
(Q;:;’ 2: 'D.8) Finish

||

ClearnC)
Civar(D) On(D.y}

CloanG) {C::':g: MOVB{D.B)

Figure 12.17 After someone else moves D onto B, the unsupported links supplying
Clear(B) and On(D, GG) are dropped, producing this plan

PLANNING AND ACTING IN THE REAL WORLD:

OnC.F)

Chear(C
OntabioyA) ClaarfD MOVO(C_D]
OnB.E)
On(C.F)

oy | Finish
Clean/C)

Cioan D)

Clea(G)

[e o _ — = = L — __ — —— = = —— —

==

from Srart,

| Figure 12.18 The link supplied by Move(D, B) has been replaced by one
and the now-redundantstep Move(D, B) has been dropped.

. e — T - e — —— W= = =

Figure 12.19 Afier Move(C,D) is executed and removed from the plan, the effects of ‘
the Start step reflect the fact that C ended up on A nstead of the intended D. The goal
precondition On(C', D) 1s sull open

- M o e = 3 o =

PLANNING AND ACTING IN THE REAL WORLD:

OnC A

ClearCl | Move(C,D)
Ondatva(A) LdeariD)
OB .f
OwCA)

)8 OndC.0
Caarif oOn0Ly | Finish
.'.'n'.'.'.l‘i-i"
Cwar(D)
Clear(G)

Figure 1220 The open condition is resolved by adding Move(C, D) back in. Notice the
new bindings for the preconditions

Finish

Figure 12.21 After Move(C, D) 1s executed and dropped from the plan, the remaining
open condition On((', D) 1s resolved by adding a causal link from the new Start step. The
plan is now completed

PLANNING AND ACTING IN THE REAL WORLD:

* The continuous planning agent addresses the following
flaws:

Missing goal: The agent can decide to add a new goal or goals to the Finish state.
(Under continuous planning, it might make more sense to change the name of Finish
to Infinity, and of Start to Current, but we will stick with tradition.)

Open precondition: Add a causal link to an open precondition, choosing either a new
or an existing action (as in POP)

Causal Conflict: Given a causal link A —2., B and an action C with effect =, choose
an ordering constraint or variable constraint to resolve the conflict (as in POP)

Unsupported link: If there 1s a causal link Start P, A where p is no longer true in

Start, then remove the link. (This prevents us from executing an action whose precon-
ditions are false.)

Redundant action: If an action A supplies no causal links, remove it and its links. (This
allows us to take advantage of serendipitous events.) K
Unexecuted action: If an action A (other than Finish) has its nrccund:lmn:s satisfied
in Start, has no other actions (besides Start) ordered before 1t, and conflicts with no
causal links, then remove A and its causal links artd return it as the action to be executed
Unnecessary historical goal: 1f there are no open preconditions and no actions in the
plan (so that all causal links go directly from Start to Finish), then we have achieved
the current goal set. Remove the goals and the links to them to allow for new goals

PLANNING AND ACTING IN THE REAL WORLD:

function CONTINUOUS-POP-AGENT(percept) returns an action
static: plan, a plan, imtially wath just Start, Finish

action « NoOp (the default)

EFFECTS|Start] = UPDATE(EFFECTS| Start), percept)
REMOVE-FLAW(plan) //possibly updating action
return action

Figure 1222 ConTiNUOUS-POP-AGENT, a continuous partial-order planning agent
After receiving a percept, the agent removes a flaw from its constantly updated plan and
then returns an action. Often it will take many steps of flaw-removal planning, during which
it retums NoOp, before it 1s ready to take a real action

PLANNING AND ACTING IN THE REAL WORLD:

Multiagent planning:
So far we discussed only single-agent environments. There

may be other agents in the environment. Adding other
agentsinto the environment leads to poor performance.

Generally, there are two types of multiagent environments:
1.Cooperative
2.Competitive

Cooperation: Joint goals and plans

It is described as the act of working togetﬁer for
achieving a common goal.

PLANNING AND ACTING IN THE REAL WORLD:

-‘lff nisi 'I lf)
Intt(At(A, [Left, Baseline]))\ At(B, [Right,Net])/
Approaching(Ball, [Right, Baseline]))\ Partner(A,B) A Partner(B, A)
Goal(Returned(Ball) A\ At(agent, /l N t'!f”
Actionl HJH(.{L’C!H. Ball),
PRECOND: Approaching(Ball, [x,y|) A Atlagent, [x,y]) A
Partner(agent, partner) /\ = At(partner, [xy])
EFFECT: Retwrned (Ball))
Letion{ Gol agent, /\ v/,
PRECOND: At{agent, [a.b])
EFFECT: All agent. /,1'.?,!_ | A At(agent, [a.b]))

Figure 12.23 The doubles tennis problem. Two agents are playing together and can be
. g y LS

in one of four locations: [LeftBaseline], [Right Baseline], [Left Net] and [RightNet]

The ball can be returned if exactly one playeris in the nght place

PLANNING AND ACTING IN THE REAL WORLD:

* The solution for the double tennis problem is a joint-plan consisting
of actions for both agents:

plan1: A :[Go(A, [Right, Baseline]), Hit(A, Ball)]
B : [NoOp(B), NoOp(B)].

plan 2: A :[Gol(A, [Left, Net]), NoOp(A)]
B : [Go(B, [Right, baseline]), Hit(B, Ball)]

PLANNING AND ACTING IN THE REAL WORLD:

* |fthere is only one plan then everything would be fine .
Here we have 2 plans. If A chooses plan2 and B chooses
planl,then nobody will return the ball . conversely, if A
chooses planl and B chooses plan2, then they will collide

with each other;no one returns the ball and the net may
remain uncovered.

collides
AB

baseline

PLANNING AND ACTING IN THE REAL WORLD:

* Note: Correct joint plans does not mean that goal
will be achieved . There should be a same joint plan.
This can be achieved by coordination.

* Coordinationis a systematic arrangement of various
elements of management so as to ensure smooth
functionality.

PLANNING AND ACTING IN THE REAL WORLD:

* In coordination, the actions are synchronized i.e.,
performing two actions concurrently . This set of
concurrent actions is called a joint plan.

(Go(A, [Left, Net]), Go(B, [Right, baseline]))

(NoOp(A), Hit(B, Ball))
Coordination mechanisms:

*The simplest method by which a group of agents can
ensure agreement on a joint plan is to adapt a convention
prior to engaging in joint activity.

*A convention is any constraint on the selection of joint
plans.

PLANNING AND ACTING IN THE REAL WORLD:

* Foreg., in double tennis problem , we can include some
constraints such as,

(i).stick to your side of the court-selects plan2.

(ii).one player alwdys stays at the net-selects planl

In the absence of applicable convention, agents can use
communication. i.e., If the ball is at equal distance

between the two partners, then one player could shout
“Mine!” or “Yours!” to indicate a preferred joint plan. Or

One player can communicate preferred joint plan by
executing the first part of it. i.e.,if agent A heads for the net
, then agent B is obliged to go back to baseline to hit the
ball . This is called plan recognition.

PLANNING AND ACTING IN THE REAL WORLD:

* These conventions are domain-specific . There are some
conventions, that are domain-independent. For this,
consider the flocking behavior of birds:

There are 3 rules executed by each bird agent:
1.Separation: Steer away from neighbors when you start to
get too close.
2. Cohesion: Steer towards the average position of the
neighbors.
3. Alignment: Steer towards the average orientation

(heading) of the neighbors.

PLANNING AND ACTING IN THE REAL WORLD:
 Competition:
Not all multiagent environments involve cooperative

agents. Agents with conflicting utility functions are in
competition with each other.

Example: Two-player zero-sum game(chess)

Here, a chess playing agent needs to consider the
opponents possible moves for several stepsinto the future.
Thatis, an agent in a competitive environment must

(a) recognize that there are other agents,

(b) compute some of the other agent's possible plans,

(c) compute how the other agent's plans interact with its
own plans, and

(d) decide on the best action in view of these interactions.

PLANNING AND ACTING IN THE REAL WORLD:

* Like coperation,competition requires a model of the other
agent’s plans but there is no commitmentto a joint plan in
a competitive environment.

The conditional planning algorithm constructs plans that

work under worst-case assumptions about the
environment, so it can be applied in competitive situations
where the agent is concerned only with success and failure.

Planning Graph

*|t is an algorithm for automated planning,
developed by Avrim and Merrick in 1995.

*The Graph Plan’s input is planning problem,
expressed in STRIPS and produces a sequence of
operations for reaching a goal state.

2/20/2021 HARINATH-IT-MGIT

Planning Graph...

* Convert the planning problem structure into planning
graph called as GRAPHPLAN, in the increment nature.

* |t gives the relation between action and states, the
precondition must be satisfy the action.

* The Planning graph is a layered graph, with alternate
layers of propositions and actions.
* Layer p0
* Layer al
* Layer pl

2/20/2021 HARINATH-IT-MGIT

Planning Graph...

* Propositiona
state, what t
produce all t
actions.

problem will look at, what the starting
he objects in the domains are, and it will

ne possible actions, and works with those

* We construct the planning graph from left to right,
* we keep inserting actions and propositions, and
* then actions and propositions

* until we get the goal proposition appear on the proposition
layer, and

* they are not mutually exclusive.

2/20/2021

HARINATH-IT-MGIT

Planning Graph...

*There are two states in the planning graph problem
* Construct the planning graph
* Search for solution

*[f you cannot get solution, then extend the planning
graph and search for solution, and keep doing that
until you get the solution.

2/20/2021 HARINATH-IT-MGIT

PLANNING GRAPHS

* Planning Graph can give better heuristic estimates.

* Here we can extract a solution directly from the planning graph,
using a specialized algorithm such as GRAPHPLAN

* A planning graph consists of a sequence of levels that
correspond to time steps in the plan, where level 0 is the initial

state.

* Each level contains a set of literals and a set of actions.

* The literals are true at that time step, depending on, the actions
executed at preceding time steps.

* Actions could have their preconditions, that should be satisfied at
that time step, depending on the literals actually hold.

2/20/2021 HARINATH-IT-MGIT

In short

* Planning graphs are an efficient way to create a
representation of a planning problem, that can be
used to

* Achieve better heuristic estimates
* Directly construct plans

* Planning graphs only work for propositional problems.

2/20/2021 HARINATH-IT-MGIT

Planning graphs

* |t consists of a seq of levels that correspond to time
steps in the plan.
* Level 0 is the initial state.

* Each level consists of a set of literals and a set of actions
that represent, what might be possible at that step in the
plan

* Records only a restricted subset of possible negative
Interactions among actions.

2/20/2021 HARINATH-IT-MGIT

Planning Graph

* Each level consists of

* Literals = all those that could be true at that time step,
depending upon the actions executed at preceding time
steps.

* Actions = all those actions have their preconditions, that
satisfied at that time step, depending on which of the
literals actually hold.

2/20/2021 HARINATH-IT-MGIT

Example - The “have cake and eat cake too”
problem.

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT: - Have(Cake) N Eaten(Cake))
Action(Bake(Cake)

PRECOND: — Have(Cake)

EFFECT: Have(Cake)

2/20/2021 HARINATH-IT-MGIT

PG — example

S

Have(Cake)

— Eaten(Cake)

Create level 0 from initial problem state.

2/20/2021 HARINATH-IT-MGIT

2/20/2021

Sg

Have(Cake)
\ —Have(Cake)
Eat(Cake) <

Eaten(Cake)
— Eaten(Cake)

Add all applicable actions.

Add all effects to the next state.

HARINATH-IT-MGIT

SO AO S1

Have(Cake) H Have(Cake)
\ —1Have(Cake)
Eat(Cake) <

Eaten(Cake)
— Eaten(Cake) — Eaten(Cake)

Add persistence actions (inaction = no-ops) to
map all literals in state S, to state S,,,.

2/20/2021 HARINATH-IT-MGIT

Sg AO 81

Have(Cake) = Have(Cake)
\ —Have(Cake)

Eat(Cake) <
Eaten(Cake)

— Eaten(Cake) = — Eaten(Cake)

|dentify mutual exclusions between actions and
literals based on potential conflicts.

2/20/2021 HARINATH-IT-MGIT

Mutual exclusion

* A mutex relation holds between two actions when:
* Inconsistent effects: one action negates the effect of another.

* Interference: one of the effects of one action, is the negation of a
precondition of the other.

* Competing needs: one of the preconditions of one action, is

mutually exclusive with the precondition of the other.

* A mutex relation holds between two literals when:
* one is the negation of the other

* each possible action pair that could achieve the literals is mutex
(inconsistent support).

2/20/2021 HARINATH-IT-MGIT

SO AO 81

Have(Cake) H Have(Cake)
\ —1Have(Cake)

Eat(Cake) <
Eaten(Cake)

— Eaten(Cake)

1
|-

— Eaten(Cake)

* Level S1 contains all literals, that could result from, picking any subset
of actions in AO

* Conflicts between literals that can not occur together (as a consequence of the
selection action) are represented by mutex links.

+ S1 defines multiple states, and the mutex links are the constraints, that define
this set of states.

2/20/2021 HARINATH-IT-MGIT

Bake(Cake)

Have(Cake) /

|

\ Have/(Caxe)

X

=)

|

—\Have(Cale)
Eat(Cake) |< \
Eaten(Cake) . -

[

Eat(Cake)

=\ Have{Cake)

Eaten(Cake)

|
J

™
|-

= Edten(Cake)

= Eden(Cake) g = Eden(Cake)

* Repeat process until graph levels off:
* two consecutive levels are identical, or
* contain the same amount of literals

2/20/2021 HARINATH-IT-MGIT

The GRAPHPLAN Algorithm

function GRAPHPLAN(problem) returns solution or failure

graph — INITIAL-PLANNING-GRAPH(problem)
goals — GOALS| problem]
loop do

if goals all non-mutex in last level of graph then do

solution — EXTRACT-SOLUTION(graph. goals, LENGTH(graph))

if solution # failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph — EXPAND-GRAPH(graph. problem)

Figure 11.13 The GRAPHPLAN algorithm. GRAPHPLAN alternates between a solution
extraction step and a graph expansion step. EXTRACT-SOLUTION looks for whether a plan
can be found. starting at the end and searching backwards. EXPAND-GRAPH adds the actions
for the current level and the state literals for the next level.

2/20/2021 HARINATH-IT-MGIT

2/20/2021

GRAPHPLAN example -
&

S

At(Flat Axle)
=1AllFlat Axle)

—1At{Spare Aa) —1At{Spare Axle)

= AlfFla, Ground) A =1 Al{Flat, Ground)
\\ AFatGrund)
= At{Spare, Ground)

Change Flat Tire

b At{Spare, Trunk)
“

' RemaovelSpare, Trunk)
—At{Spare, Trunk)

Al(Flat Axde)

‘;b = AtiFlat Axie)

== —Al(Spare Axe)
e At Spare Axle)
= Al{Flat, Ground)

* |nitially the plan consist of 5 literals from the initial state (SO).
* Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
* Also add persistence actions and mutex relations.

* Add the effects at level 51
* Repeat until goal is in level Si

HARINATH-IT-MGIT

Al(Flat, Axle)

—1At(Spare, Axe)

— At{Flat, Ground)

— At(Spare, Ground)

2/20/2021

S,

At(Spare, Trunk)

—At{Spare, Trunk)

At{Flat Axle)
—At(Flat Axle)

—At{Spare,Axle)

\ = At(Flat,Ground)
At(Flat Ground)

—At{Spare, Ground)
At(Spare, Ground)

A

S

At(Spare, Trunk)
Remove(Spare, Trurk) [\
— At{Spare, Trunk)

Remove(Fat, Axie)

X

| LeaveOvernight

AtfFiat, Axe)
—At(Flat Axle)

=1 Al(Spare Axle)
At(Spare Axle)

— AtFlat, Ground)
At(Flat, Ground)

_I At(Spare, Ground)
At(Spare,Ground)

HARINATH-IT-MGIT

S, 5,

A Spare, Trunk) AtiSpare, Trunk)

= Al{Spare, Trurk)

= AlfFa, Ground|

=Al(Spare, Ground)

EXPAND-GRAPH also looks for mutex relations

0 Inconsistent effects
® E.g Remove(Spare, Trunk) ond LeaveOverNight due to At(Spare,Ground) and net At(Spare, Ground)

0 Interference
» E.g Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT

0 Competing needs
» E.g. PutOn(Spare Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

0 Inconsistent support
= Eg inS2, At(Spare,Axle) and At(Flat,Axle)

2/20/2021 HARINATH-IT-MGIT

2/20/2021

SO S1 Sz
A Spare. Trunk) AtSpare, Trurk) < At Spare, Trunk)

—ASpare Tuk) — gy | —AYSpare, Trunk

At{Flat Axte)
= AlfFlat Arlg)

—1A(Spare, Avle)

=1 AtFlat, Ground) =1AtFlat Ground)
AtiFiat Grourd)
= At{Spare, Ground) At(Spare, Ground)
AliSpare Ground) L

In S2, the goal literals exist and are not mutex with any other
o Solution might exist and EXTRACT-SOLUTION will try to find it

EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process:

0 Initial state = last level of PG and goal goals of planning problem

0 Actions = select any set of non-conflicting actions that cover the goals in the state
0 Goal = reach level SO such that all goals are satisfied

o Cost = 1 for each action.

HARINATH-IT-MGIT

GRAPHPLAN Termination

* Termination? YES

* PG are monotonically increasing or decreasing:
* Literals increase monotonically

* Actions increase monotonically
* Mutexes decrease monotonically

* Because of these properties and a finite number of actions and
literals, every PG will finally level off

2/20/2021 HARINATH-IT-MGIT

Planning Problem

* Agent Environment States are represented as valuations of
state variables

* an action can be represented as a procedure or a program

* The procedures are used to compute values of state
variables

» After the execution of procedure (i.e. after the action), the
environment state will be changed, towards the goal.

2/20/2021 HARINATH-IT-MGIT

Planning Algorithms

* Representation of planning problems—states, actions,
and goals—should make it possible for planning
algorithms.

» Algorithms are nothing but logical structure of the
problem.

*To define an efficient algorithm, language is very
important.

* STRIPS Language - the language of classical planner.

2/20/2021

Representation of States

* Planners decompose the agent world into logical
conditions, and represent a state as a conjunction of
positive literals.

*In first-order state descriptions, Literals must be ground
and function-free.

» At (x, y) or At (Father(Red), Sydney) are not allowed.

* The closed-world assumption, that is any conditions
that are not mentioned in a state are assumed false

2/20/2021 HARINATH-IT-MGIT

Representation of Goals.

* A goal is a partially specified state, represented as a
conjunction of positive ground literals, such as

* 1. Rich A

* A propositi

Famous 2. At (P2,Delhi).

onal state s, satisfies a goal g, if s contains

all the atoms in g

*The propositional state Rich * Famous * Happy
satisfies the goal state Rich * Famous.

2/20/2021

Representation of Actions.

* To perform an Action, we need Precondition (how
environment should be to perform this action) and Effect
(how the environment will be after performing this
action).

* An action for flying a plane from one location to another
S:

* Action : Fly(p, from, to)
* PRECOND : At (p, from) 2 Plane(p) A Airport(from) A Airport(to)
 EFFECT : At (p, from) " At (p, to)

2/20/2021 HARINATH-IT-MGIT

Action Schema

* |t represents a number of different actions can be derived

* Action schema consists of three parts

* The action name and parameter list—
+ for example, Fly(p, from, to)— fly is action, and p, from, to are parameters,

* The precondition is a conjunction of function-free positive literals, and it
must be true, before the action can be executed.

» Variables in the precondition must also appear in the action’s parameter list.

» The effect is a conjunction of function-free literals, describing how the state
changes, when the action is executed.

» Apositive literal P are declared to be true in the state, and all the negative literal P is
declared to be false.

* Variables in the effect must also appear in the action’s parameter list.

2/20/2021 HARINATH-IT-MGIT

Applicable Action

* An action is applicable in any state, iff that satisfies the precondition,
otherwise, the action has no effect.

* a first-order action schema, first all the variables in precondition will
be substituted
* At (P1, JFK) A At (P2, SFO) A Plane(P1) A Plane(P2) A Airport(JFK) A Airport(SFO)
This state satisfies the precondition
* At (p, from) A Plane(p) A Airport(from) A Airport(to)
* with the substitution {p=P1, from=JFK, to=SFO}

* Thus, the concrete action Fly(P1, JFK, SFO) is applicable

2/20/2021 HARINATH-IT-MGIT

Solution for Planning Problem

» An action sequence, that started from the initial state,
and results in a state that satisfies the goal.

» Solutions to be partially ordered sets of actions

» Every action sequence, that respects the partial order
is a solution (i.e. every action has its own solution.)

Unit 5

Expert System Shell

Expert System Shells

* An Expert system shell is a software
development environment.

* |t contains the basic components of expert
systems.

* A shell is associated with a prescribed method
for building applications by configuring and
instantiating these components.

- S S T M mMm

Expert System Shells

Expert System Shell

Inference

nowledge lueL Mechanism plana
em| Focts, Heuristics Reasoning with |Subsystem
\ Uncertainty -

Knowledge
Engineer

SN

Shell components

. knowledge acquisition,
. knowledge Base,

reasoning,
explanation and
user interface

Knowledge acquisition

* A subsystem to help experts in build
knowledge bases.

* However, collecting knowledge, needed to
solve problems and build the knowledge base,

is the biggest bottleneck in building expert
systems.

Knowledge Base

* A store of factual and heuristic knowledge.
Expert system tool provides one or more
knowledge representation schemes for

expressing knowledge about the application
domain.

* Some tools use both Frames (objects) and IF-
THEN rules.

* In PROLOG the knowledge is represented as
logical statements.

Reasoning Engine

* Inference mechanisms for manipulating the
symbolic information and knowledge in the
knowledge base form a line of reasoning in
solving a problem.

* The inference mechanism can range from
simple modus ponens backward chaining of
IF-THEN rules to Case-Based reasoning.

Explanation

* A subsystem that explains the system's
actions.

* The explanation can range from how the final
or intermediate solutions were arrived at
justifying the need for additional data.

User interface

* A means of communication with the user. The
user interface is generally not a part of the
expert system technology.

* |t was not given much attention in the past.

* However, the user interface can make a critical
difference in the perceived utility of an Expert
system.

Case Studies: MYCIN

MYCIN

* MYCIN is an expert system used for diagnosing
bacterial infections. The major characteristics
of medical domain is the uncertain and
imprecise data coupled with vast quantities of
medical knowledge.

* MYCIN was developed at Stanford University
to help physicians in identifying what bacteria
has been the cause for the infection and to
suggest remedial solutions.

MYCIN: knowledge base

* MYCIN’s “knowledge base™ organized as set of production
rules. One distinguishing features of the production rule in
MYCIN is the certainty factor associated with it. Herewith, we ,
give a sample production rule in LISP and also the English
equivalent. Sample MYCIN rule

(internal representation)
PREMISE : (SAND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC)
ACTION : (CONCLUDE CNTXT IDENTITY BACTERIODES TALLY .6)

MYCIN: knowledge base

English representation

IF the infection is primary-bacteremia

AND the site of the culture is one of the sterile sites

AND the suspected portal of entry is the gastrointestinal tract

THEN there 1s suggestive evidence (0.7) that infection is bacteroid.

Apart from the production rule, the system has a collection of facts. Facts are
stored in the form

CONTEXT-PARAMETER-VALUE OR

OBJECT-AT TRIBUTE-VALUE TRIPLES

The OBIJECT also called CONTEXT refers to such things as cultures taken
from the patient, the drugs administered and so on. These OBJECTS are

characterized by their ATTRIBTE or PARAMETER and the value of these
are stored in VALUE. Associated with each triple is a certainty factor

between -1 and +1. A CF of +1 indicates total belief, while a CF of -1
indicates total disbelief.

Ex: (IDENTITY ORGANISM -1 PSEUDOMONAS 0.8)

W}:)icxl}’mcans “Pseudomonas is the identity of the organism-1 with certainty

MYCIN: Reasoning and Problem
Solving Strategy

MYCIN could use backward chaining to find out whether a
possible bacteria was to blame.

This was augmented with “certainty factors” that allowed an
assessment of the likelihood, if no one bacteria was certain.

MYCIN’s problem solving strategy was simple:
— For each possible bacteria:

* Using backward chaining, try to prove that it is the
case, finding the certainty.

— Find a treatment which “covers” all the bacteria above
some level of certainty.

MYCIN: Problem Solving

When trying to prove a goal through backward chaining,

system could ask user certain things.

— Certain facts are marked as “askable”, so if they
couldn’t be proved, ask the user.

* This results in following style of dialogue:

MYCIN: Has the patient had neurosurgery?
USER: No.

MYCIN: Is the patient a burn patient?
USER: No.

MYCIN: Problem Solving

* As of today, many extensions to the MYCIN
approach have emerged. In order to minimize the
human intervention in knowledge acquisition
facility, a system called TEIRESIAS has been
developed. Through TEIRESIAS, the expert can
directly communicate with the knowledge base.

* Another system, called GUIDON has also been
developed that uses the explanation capability of
MYCIN for instructional purposes. MYCIN, as n
expert system has surpassed human physicians in
their reasoning capabilities.

Knowledge Acquisition stages

* Knowledge acquisition has five stages throughout the
development. The stages are as following:

Identification

* This stage 1dentifies the problems and the knowledge engineer
becomes aware of the domain, its goals and selects the correct
material.

Conceptualization

* This defines how the concepts or ideas and the associations
between them are outlined and how experts relate them.

Formalization

* Here the knowledge engineer organizes the concepts, tasks and
other information into formal and clear representation.

Knowledge Acquisition stages

Implementation

* Here the knowledge rules are put into a structured form for
the expert system tool and a prototype (trial model) is
created for testing out the design and the processes. The
knowledge engineer has to produce a written documentation
that will connect the knowledge base topics with the
original data that were created earlier.

Testing

* The prototype system is tested for its efficiency and
accuracy to see if it is working as required. In order to do
this a small scenario or problem set 1s tested and the results

from this system are used to alter or improve the prototype
system.

LISt Processing : LISP

Introduction
LISP was invented by John McCarthy during the late 1950s.

It 1s particulary suited for Al programs becausee of its ability to

process symbolic information effectively.
Basic building blocks of LISP are the Atom, List. and the String.

An Atom is a number or string of contiguous characters, including

numbers and spectial characters.

A List is sequence of atoms and/or other lists enclosed within

parentheses.

A String is a group of characters enclosed in double.

What is Prolog?

e Prolog is acronym of PROgramming in LOGic.
e Prolog program is sequence of rules and facts.
e Prolog Rule for grandfather is defined as:

Expert Systems

What is an Expert System?

* An expert system is computer software(program) that exhibits
intelligent behavior and also that attempts to act like a human
expert on a particular subject area.

It in-corporates the concepts and methods of symbolic inference
reasoning and the use of knowledge for making these inferences.
Expert systems also called as knowledge based expert system.

* Expert systems are often used to advise non-experts in situations
where a human expert in unavailable (for example it may be too
expensive to employ a human expert, or it might be a difficult to
reach location).

How Do Expert Systems Work?
An expert system is made up of three parts:

* A user interface - This is the system that allows a non-expert
user to query (question) the expert system, and to receive advice. The user-
interface is designed to be a simple to use as possible.

A knowledge base - This is a collection of facts and rules. The knowledge
base is created from information provided by human experts

* An inference engine - This acts rather like a search engine, examining the
knowledge base for information that matches the user's query

Knowledge VvV IMP
Non-expert Q= LT L L L e L e T T T e, : from an expert
user | Expert System : \
Query . P e -

S | : &
_) O i/ \ .
- E ? Inference ' | Knowledge | . §
= % \ Engine) Base
% « /

= N o
. . -
Advice * — 2
- »
: .
A R R R E R R R R R R R RN EEEEEEEEEEEY

Where Are Expert Systems Used?

* Medical diagnosis (the knowledge base would contain medical
information, the symptoms of the patient would be used as the query, and
the advice would be a diagnose of the patient’s illness)

* Playing strategy games like chess against a computer (the knowledge base
would contain strategies and moves, the player's moves would be used as
the query, and the output would be the computer's 'expert' moves)

* Providing financial advice - whether to invest in a business, etc. (the
knowledge base would contain data about the performance of financial
markets and businesses in the past)

* Helping to identify items such as plants / animals / rocks / etc. (the
knowledge base would contain characteristics of every item, the details of
an unknown item would be used as the query, and the advice would be a
likely identification)

* Helping to discover locations to drill for water / oil (the knowledge base
would contain characteristics of likely rock formations where oil / water
could be found, the details of a particular location would be used as the
query, and the advice would be the likelihood of finding oil / water there)

Phases 1n building Expert System

VvV IMP

There are different interdependent and overlapping
phases in building an expert system as follows:
Identification Phase:
- Knowledge engineer finds out important features of the
problem with the help of domain expert (human).
— He tries to determine the type and scope of the problem, the
kind of resources required, goal and objective of the ES.
Conceptualization Phase:

— In this phase, knowledge engineer and domain expert decide
the concepts, relations and control mechanism needed to
describe a problem solving.

Formalization Phase:

— It involves expressing the key concepts and relations in some
framework supported by ES building tools.

— Formalized knowledge consists of data structures, inference
rules, control strategies and languages for implementation.

Implementation Phase:

— During this phase, formalized knowledge is converted to

working computer program initially called prototype of the
whole system.

Testing Phase:

— It involves evaluating the performance and utility of prototype
systems and revising it if need be. Domain expert evaluates
the prototype system and his feedback help knowledge
engineer to revise it.

Knowledge Engineering:

* The process of gathering knowledge from a domain expert and codifying it
according to the formalism is called knowledge engineering.

* The tasks and responsibilities of a knowledge engineering involve the
following:

1. Ensuring that the computer has all the knowledge needed to solve a
problem

Choosing one or more forms to represent the required knowledge.

Ensuring that the computer can use the knowledge efficiently by
selecting some of the reasoning methods.

Interaction between Knowledge engineer and domain expert for
creating an ES

Strategies & IMP

Domain Rules
Knowledge Expert
Engineer System

Answers/Solutions

Queries/Questions

*The main role in knowledge engineer begins only once the problem of
some domain for developing an ES is decided. The job of the
knowledge engineer involves close collaboration with the domain
expert and end user.

*The next step of the process involves a more systematic interviewing
of the expert. The knowledge engineer will then extract general rules
from the discussion and interview held with expert and get them
checked by the expert for correctness.

* The domain knowledge consisting of both formal, textbook
knowledge and experiential knowledge is entered into the program
piece by piece

Expert System Architecture "™

Expert Svstein

Inference Engine

.‘, special Interfaces

-

Inference| & | Control

=

Human
Exzpert Enowled ge Acquisition
& Liearming Module

Case History

¢ Enowled ge Base

Static databasze

Uszer = -{ User Interface 4\ | I

“-\ Dvnamic database
(working memory)

l Explanation Module

4

Knowledge Base (KB)

KB consists of knowledge about problem domain in the
form of static and dynamic databases.

Static knowledge consists of

- rules and facts which is complied as a part of the system and
does not change during execution of the system.

Dynamic knowledge consists of facts related to a

particular consultation of the system.

- At the beginning of the consultation, the dynamic knowledge
base often called working memory is empty.

- As a consultation progresses, dynamic knowledge base grows
and is used along with static knowledge in decision making.

Working memory is deleted at the end of consultation
of the system.

Inference Engine

It consists of inference mechanism and control strategy.
Inference means search through knowledge base and
derive new knowledge.

It involve formal reasoning involving matching and
unification similar to the one performed by human
expert to solve problems in a specific area of
knowledge.

Inference operates by using modus ponen rule.

Control strategy determines the order in which rules are
applied.

There are mainly two types of control mechanism viz.,
forward chaining and backward chaining.

Forward Chaining Example
-_— e

Suppose we have three rules:
R1:If Aand B then D

R2: If B then C

R3: If C and D then E

If facts A and B are present, we infer D from R1
and infer C from R2. With D and C inferred,
we now infer E from R3.

Backward Chaining Example
fa——— |

The same three rules:

R1: If A and B then D

R2: If B then C

R3: If C and D then E

If E is known, then R3 implies C and D are true.
R2 thus implies B is true (from C) and R1
implies A and B are true (from D).

Knowledge Acquisition

e Knowledge acquisition module allows system to
acquire knowledge about the problem domain.

e Sources of Knowledge for ES
- text books, reports, case studies,
— empirical data and
— domain expert experience.
e Updation of Knowledge can be done using
knowledge acquisition module of the system.
— insertion,
— deletion and
— updation of existing knowledge

Casec History

e Case History stores the file created by inference
engine using the dynamic database created at the
time of consultation.

e Useful for learning module to enrich its knowledge
base.

e Different cases with solutions are stored in Case
Base system.

e These cases are used for solving problem using
Case Base Reasoning (CBR).

Explanation module

e Most expert systems have explanation facilities that
allow the user to ask the system why it asked some
guestion, and how it reached to conclusion.

e |t contains 'How' and '"Why' modules attached to it.

- The sub-module ‘How’ tells the user about the process
through which system has reached to a particular solution

- ‘Why' sub-module tells that why is that particular solution
offered.
e |t explains user about the reasoning behind any
particular problem solution.

e Questions are answered by referring to the system
goals, the rules being used, and any existing problem
data.

Explanation Modules Responses

[Tser Why module

System Do you have running nose?

User Yes.

Bystem I am trying to prove that vou have cold Do you have headache?

User Yes

System Do you have sore throat?

User No

System Then you do not have cold. Do you have fever?

Jser Yes

system Now I am looking at the possibility of measles. Do you have cough?

User Yes

System I can infer measles using rule “If symptoms are fever, cough,
running nose, then patient has measles” measles iz concluded,

User How Module

System Since you have fever, running nose and cough andthere1s a rule “If

symptoms are fever, cough, runming nose, then patient has measles™.
So measles 15 concluded for you.

User Interfaces

Allows user to communicate with system in interactive
mode and helps system to create working knowledge
for the problem to be solved.

Dialogue Module (User Intertace)
Systemn Do you have fever?
User Yes
Systemn Do you have bad throat?
Usex No
System Do you have cough?
User Yes
System Are you suffenng from running nose?
User Tes
Svstem Are you suffering from headache?
User No

Special iterfaces

it may be used for specialized activities such as
handling uncertainty in knowledge.

This is @ major area of expert systems research that
involves methods for reasoning with uncertain data
and uncertain knowledge.

Knowledge is generally incomplete and uncertain.

To deal with uncertain knowledge, a rule may have
associated with it a confidence factor or a weight.
The set of methods for using uncertain knowledge in
combination with uncertain data in the reasoning
process is called reasoning with uncertainty.

Traditional System(Conventional) vs Expert Systems

Conventional Systems Expert Systems
Information and processing combinedina single | Knowledge base separate from the mechanism
sequential program processing (inference)
The programis neverwrong The program could have made a mistake
Needallthe input data Not necessarily need all inputs data or facts
Changestothe programinconvenient Changesinthe rules can be made with ease
The systemworksifit is complete The system can work only with the rules a little
Efficiency is the main objective Effectivenessis the main objective
quantitative data qualitative data
Representation of datain numerical Representation symbols

Characteristics Of Expert
Systems

« The Highest level of expertise

» Right on time reaction

» Accepting the incorrect reasoning

» Good reliability

» Easily understood

» Flexible

« Symbolic reasoning

» Heuristic reasoning

» Making mistakes

» Expanding with tolerable difficulties

Advantages of Expert System:

Helps in preservation scarce expertise

Provides consistent answers for repetitive decisions process
and tasks.

Fastens the pace of human professional or semi-professional
work

Holds and maintains significant levels of information.
Provides improved quality of decision making

Domain experts are not always able to explain their logic and
reasoning unlike ES

Encourages organizations to clarify the logic of decision making
Leads to major internal cost savings within companies

Causes introduction of new products

Never forgets to ask questions, unlike human.

DISAdvantages of Expert System:

* Unable to make creative response as human experts would in
unusual circumstances.

* Lacks common sense needed in some decision making.

* May cause errors in the knowledge base, and lead to wrong
decisions.

* Cannot adapt to changing environments. Unless knowledge
base in changed

Languages used in Expert System:

LISP (List Processing), Prolog(Programming in Logic), C, C++,
JAVA etc.

Truth Maintenance System (TMS)

e Truth maintenance system (TMS) works with inference engines
for solving problems within large search spaces.

e The TMS and inference engine both put together can solve
problems where algorithmic solutions do not exist.

e TMS maintains the beliefs for general problem solving systems.

Problem Solver

IE lTPxIS
-

KB

TMS - Cont

e TMS can be used to implement monotonic or non-
monotonic systems.

e In monotonic system, once a fact or piece of
knowledge is stored in KB, it can not change.

- In monotonic reasoning, the world of axioms continually
increases in size and keeps on expending.

- Predicate logic is an example of monotonic form of
reasoning. It is a deductive reasoning system where new
facts are derived from the known facts.

¢ Non-monotonic system allows retraction of truths that
are present in the system whenever contradictions
arise.

- S0 number of axioms can both increase and decrease and
depending upon the changes in KB, it can be updated.

Monotonic TMS:

 The most practical applications of monotonic systems using TMS are
qualitative simulation, fault diagnosis and search applications.

« A monotonic TMS is general facility for manipulating Boolean
constraints on proposition symbols. The constraint has the form
P—>Q where P and Q are proposition symbols that an outside
observer can interpret as representation of the statements.

Functionality of a Monotonic TMS

e A TMS stores a set of Boolean constraints, Boolean
formulas(premises) and assings truth values to literals that satisfy
this stored set of constraints.

e ATMS generally consist of the following generic interface funstions:

— Add_constraint
— Follow_Form
— Interface funtions

Example — Monotonic TMS

e Suppose we are given the premise set > = {P, W}
and the internal constraint set

{P>Q(PAW)=>R, (QAR)=> S}

e TMS are able to derive S from these constraints and
the premise set 3.

e ITMS should provide the justifications of deriving S
from constraints and premises.

e [herefore, for any given set of internal constraints

and premise set ¥, if a formula S can be derived from
these, then justification functions generate a

justification tree for S.

Justification Tree

S 7
/ AQR} /
P-=>Q -"Pgl'ff.;!h) (Rh)q-—-

Non-Monotonic TMS

o [MS basically operates with two kinds of objects
- ‘Propositions’ declaring different beliefs and

- ‘Justifications’ related to individual propositions for
backing up the belief or disbelief expressed by the

proposition.
o For every TMS, there are two Kinds of justifications
required namely ‘Support list' and ‘Conditional proof'.

Support list (SL)
o |tis defined as “SL(IN-node)(OUT-node)”, where IN-

node is a list of all IN-nodes (propositions) that
support the considered node as true.

- Here IN means that the belief is true.

- OUT-node is a list of all OUT nodes for the considered node
to be true. OUT means that belief is not true.

Example

Node number | Facts assertions

Justification (justified belief)

| [t 15 sunny SL(3)(24)
) [t rams SL) ()

3 [t 1z warm SL(1)(2)

4 [t 18 mght time SLO) (1)

Conditional Proof

¢ A belief may be justified on the basis of several other
beliefs, by the conditional proof on one belief relative
to other beliefs, or by the lack of belief in some fact.

e These are justifications which support belief if a
specified belief follows from a set of other beliefs.

¢ [ruth maintenance processing is required when new
justifications change previously existing beliefs.

¢ |n such cases, the status of all beliefs depending on
the changed beliefs must be re determined.

e Dependency-directed backtracking is a powerful
technique based on the representations of the truth
maintenance system.

List of Shells and Tools

Acquire: It is primarily a knowledge-acquisition system and ES
shell. Which provides a complete development environment for the
building and maintenance of knowledge-based application.

MYCIN: MYCIN was an early backward chaining expert system that
used artificial intelligence to identify bacteria causing severe
infections, such as bacteremia and meningitis, and to

recommend antibiotics, with the dosage adjusted for patient's body
weight — the name derived from the antibiotics themselves, as
many antibiotics have the suffix "-mycin". The Mycin system was
also used for the diagnosis of blood clotting diseases. MYCIN was
developed over five or six years in the early 1970s at Stanford
University. It was written in Lispas the doctoral dissertation

of Edward Shortliffe under the direction of Bruce G.
Buchanan, Stanley N. Cohen and others.

https://en.wikipedia.org/wiki/Backward_chaining
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Bacteremia
https://en.wikipedia.org/wiki/Meningitis
https://en.wikipedia.org/wiki/Antibiotic
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Lisp_programming_language
https://en.wikipedia.org/wiki/Edward_Shortliffe
https://en.wikipedia.org/wiki/Stanley_N._Cohen

e K-Vision: It is a knowledge acquisition and
visualization tool. It runs on windows dos etc.

 MailBot: IT is personal e-mail agent that reasd
an e-mail message on standard input and
creates an e-mail reply to be sent to the
sender of the original message. It provides
filtering, forwarding notification and automatic
guestion-answering capabilities

