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Introduction to Automata 

Theory
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What is Automata Theory?

 Study of abstract computing devices, or 
“machines”

 Automaton = an abstract computing device
 Note: A “device” need not even be a physical 

hardware!

 A fundamental question in computer science: 
 Find out what different models of machines can do 

and cannot do

 The theory of computation

 Computability vs. Complexity
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Alan Turing (1912-1954)

 Father of Modern Computer 
Science

 English mathematician

 Studied abstract machines called 
Turing machines even before 
computers existed

 Heard of the Turing test?

(A pioneer of automata theory)
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Theory of Computation: A 

Historical Perspective

1930s • Alan Turing studies Turing machines

• Decidability

• Halting problem

1940-1950s • “Finite automata” machines studied

• Noam Chomsky proposes the 

“Chomsky Hierarchy” for formal 

languages

1969 Cook introduces “intractable” problems

or “NP-Hard” problems

1970- Modern computer science: compilers, 

computational & complexity theory evolve
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Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002 

 Languages: “A language is a 
collection of sentences of 
finite length all constructed 
from a finite alphabet of 
symbols”

 Grammars: “A grammar can 
be regarded as a device that 
enumerates the sentences of 
a language” - nothing more, 
nothing less

 N. Chomsky, Information 
and Control, Vol 2, 1959
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The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive 

(LBA)

Recursively-

enumerable 

(TM)

• A containment hierarchy of classes of formal languages



7

The Central Concepts of 

Automata Theory
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Alphabet

An alphabet is a finite, non-empty set of 
symbols

 We use the symbol ∑ (sigma) to denote an 
alphabet

 Examples:
 Binary: ∑ = {0,1} 

 All lower case letters: ∑ = {a,b,c,..z}

 Alphanumeric: ∑ = {a-z, A-Z, 0-9}

 DNA molecule letters: ∑ = {a,c,g,t}

 …
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Strings

A string or word is a finite sequence of symbols 
chosen from ∑

 Empty string is  (or “epsilon”)

 Length of a string w, denoted by “|w|”, is 
equal to the number of (non- ) characters in the 
string
 E.g., x = 010100  |x| = 6

 x = 01  0  1  00  |x| = ?

 xy = concatentation of two strings x and y 
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Powers of an alphabet 

Let ∑ be an alphabet.

 ∑k = the set of all strings of length k

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …
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Languages

L is a said to be a language over alphabet ∑, only if L  ∑*

 this is because ∑* is the set of all strings (of all possible 
length including 0) over the given alphabet ∑

Examples:

1. Let L be the language of all strings consisting of n 0’s 
followed by n 1’s: 

L = {, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of 
0’s and 1’s: 

L = {, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language

 Let L = {}; Is L=Ø? NO

Canonical ordering of strings in the language
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The Membership Problem

Given a string w ∑*and a language L 

over ∑, decide whether or not w L.

Example:

Let w = 100011

Q) Is w  the language of strings with 

equal number of 0s and 1s?
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Finite Automata

 Some Applications
 Software for designing and checking the behavior 

of digital circuits

 Lexical analyzer of a typical compiler

 Software for scanning large bodies of text (e.g., 
web pages) for pattern finding

 Software for verifying systems of all types that 
have a finite number of states (e.g., stock market 
transaction, communication/network protocol)
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Finite Automata : Examples

 On/Off switch

 Modeling recognition of the word “then”

Start state Final stateTransition Intermediate 

state

action

state
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Structural expressions

 Grammars

 Regular expressions

 E.g., unix style to capture city names such 

as “Palo Alto CA”:

 [A-Z][a-z]*([ ][A-Z][a-z]*)*[ ][A-Z][A-Z]

Start with a letter

A string of other 

letters (possibly

empty)

Other space delimited words

(part of city name)

Should end w/ 2-letter state code
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Formal Proofs
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Deductive Proofs

From the given statement(s) to a conclusion 

statement (what we want to prove)

 Logical progression by direct implications

Example for parsing a statement:

 “If y≥4,    then 2y≥y2.”

(there are other ways of writing this).

given conclusion
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Example: Deductive proof 

Let Claim 1: If y≥4, then 2y≥y2. 

Let x be any number which is obtained by adding the squares 

of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that 2x≥x2

 Proof:

1) Given: x = a2 + b2 + c2 + d2

2) Given: a≥1, b≥1, c≥1, d≥1

3)  a2≥1, b2≥1, c2≥1, d2≥1 (by 2)

4)  x ≥ 4 (by 1 & 3)

5)  2x ≥ x2 (by 4 and Claim 1) 

“implies” or “follows”



On Theorems, Lemmas and Corollaries

We typically refer to: 

 A major result as a “theorem”

 An intermediate result that we show to prove a larger result as a 

“lemma”

 A result that follows from an already proven result as a 

“corollary”

19

An example:

Theorem: The height of an n-node binary 

tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has 

2i nodes.

Corollary: A perfect binary tree of height h 

has 2h+1-1 nodes.
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Quantifiers

“For all” or “For every”
 Universal proofs

 Notation=

“There exists”
 Used in existential proofs

 Notation=

Implication is denoted by =>
 E.g., “IF A THEN B” can also be written as “A=>B” 
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Proving techniques

 By contradiction

 Start with the statement contradictory to the given 
statement

 E.g., To prove (A => B), we start with:
 (A and ~B)

 … and then show that could never happen

What if you want to prove that “(A and B => C or D)”?

 By induction

 (3 steps) Basis, inductive hypothesis, inductive step

 By contrapositive statement

 If A then B ≡ If ~B then ~A
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Proving techniques…

 By counter-example

 Show an example that disproves the claim

 Note: There is no such thing called a 
“proof by example”! 

 So when asked to prove a claim, an example that 
satisfied that claim is not a proof 



23

Different ways of saying the same 

thing 

 “If H then C”:

i. H implies C

ii. H => C

iii. C if H

iv. H only if C

v. Whenever H holds, C follows
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“If-and-Only-If” statements

 “A if and only if B”  (A <==> B)
 (if part) if B then A  ( <= )

 (only if part) A only if B ( => )
(same as “if A then B”)

 “If and only if” is abbreviated as “iff”
 i.e., “A iff B”

 Example:
 Theorem: Let x be a real number. Then floor of x = 

ceiling of x if and only if x is an integer.

 Proofs for iff have two parts 
 One for the “if part” & another for the “only if part”
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Summary

 Automata theory & a historical perspective

 Chomsky hierarchy 

 Finite automata

 Alphabets, strings/words/sentences, languages

 Membership problem

 Proofs:

 Deductive, induction, contrapositive, contradiction, 
counterexample

 If and only if
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Finite Automata
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Finite Automaton (FA)

 Informally, a state diagram that comprehensively 
captures all possible states and transitions that a 
machine can take while responding to a stream or 
sequence of input symbols

 Recognizer for “Regular Languages”

 Deterministic Finite Automata (DFA)
 The machine can exist in only one state at any given time

 Non-deterministic Finite Automata (NFA)
 The machine can exist in multiple states at the same time
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Deterministic Finite Automata 

- Definition

 A Deterministic Finite Automaton (DFA)
consists of:
 Q ==> a finite set of states

 ∑ ==> a finite set of input symbols (alphabet)

 q0 ==> a start state

 F ==> set of accepting states

 δ ==> a transition function, which is a mapping 
between Q x ∑ ==> Q

 A DFA is defined by the 5-tuple: 
 {Q, ∑ , q0,F, δ }
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What does a DFA do on 

reading an input string?

 Input: a word w in ∑*

 Question: Is w acceptable by the DFA?

 Steps:
 Start at the “start state” q0

 For every input symbol in the sequence w do
 Compute the next state from the current state, given the 

current input symbol in w and the transition function

 If after all symbols in w are consumed, the current 
state is one of the accepting states (F) then accept 
w;

 Otherwise, reject w.
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Regular Languages

 Let L(A) be a language recognized by a 

DFA A. 

 Then L(A) is called a “Regular Language”.

 Locate regular languages in the 

Chomsky Hierarchy
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The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive 

(LBA)

Recursively-

enumerable 

(TM)

• A containment hierarchy of classes of formal languages
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Example #1

 Build a DFA for the following language:
 L = {w | w is a binary string that contains 01 as a substring}

 Steps for building a DFA to recognize L:
 ∑ = {0,1}

 Decide on the states: Q

 Designate start state and final state(s)

 δ: Decide on the transitions: 

 “Final” states == same as “accepting states”

 Other states == same as “non-accepting states”
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DFA for strings containing 01

q0
start

q1

0

Regular expression: (0+1)*01(0+1)*

1 0,10

1
q2

Accepting

state

• What if the language allows 

empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0

• F = {q2} 

• Transition table

q2q2*q2

q2q1q1

q0q1q0

10

s
ta

te
s

symbols
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Example #2

Clamping Logic: 
 A clamping circuit waits for a ”1” input, and turns on forever. 

However, to avoid clamping on spurious noise, we’ll design 
a DFA that waits for two consecutive 1s in a row before 
clamping on.

 Build a DFA for the following language:
L = { w | w is a bit string which contains the 

substring 11}

 State Design:
 q0 : start state (initially off), also means the most recent input 

was not a 1

 q1: has never seen 11 but the most recent input was a 1

 q2: has seen 11 at least once
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Example #3

 Build a DFA for the following language:

L = { w | w is a binary string that has even 

number of 1s and even number of 0s}

 ?
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Extension of transitions (δ) to 

Paths (δ)

 δ (q,w) = destination state from state q
on input string w

 δ (q,wa) = δ (δ(q,w), a)

 Work out example #3 using the input 
sequence w=10010, a=1:

 δ (q0,wa) = ?
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Language of a DFA

A DFA A accepts string w if there is a 
path from q0 to an accepting (or final) 
state that is labeled by w

 i.e., L(A) = { w |  δ(q0,w)  F }

 I.e., L(A) = all strings that lead to an 
accepting state from q0
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Non-deterministic Finite 

Automata (NFA)

 A Non-deterministic Finite Automaton 

(NFA) 

 is of course “non-deterministic”

 Implying that the machine can exist in more 

than one state at the same time

 Transitions could be non-deterministic

qi

1

1

qj

qk

… • Each transition function therefore 

maps to a set of states
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Non-deterministic Finite 

Automata (NFA)

 A Non-deterministic Finite Automaton (NFA)
consists of:
 Q ==> a finite set of states

 ∑ ==> a finite set of input symbols (alphabet)

 q0 ==> a start state

 F ==> set of accepting states 

 δ ==> a transition function, which is a mapping 
between Q x ∑ ==> subset of Q

 An NFA is also defined by the 5-tuple: 
 {Q, ∑ , q0,F, δ }
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How to use an NFA?

 Input: a word w in ∑*

 Question: Is w acceptable by the NFA?

 Steps:
 Start at the “start state” q0

 For every input symbol in the sequence w do

 Determine all possible next states from all current states, given 
the current input symbol in w and the transition function

 If after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;

 Otherwise, reject w.



16

NFA for strings containing 01

q0
start

q1

0

0,1 0,1

1
q2

Final

state

• Q = {q0,q1,q2}

•  = {0,1}

• start state = q0

• F = {q2} 

• Transition table

{q2}{q2}*q2

{q2}Φq1

{q0}{q0,q1}q0

10

s
ta

te
s

symbols

What will happen if at state q1

an input of 0 is received? 

Why is this non-deterministic? 

Regular expression: (0+1)*01(0+1)*
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What is an “error state”?

 A DFA for recognizing the key word 

“while”

 An NFA for the same purpose:

q0

w
q1

h
q2

i
q3

l
q4

e
q5

qerr

Any other input symbol

q0

w
q1

h
q2

i
q3

l
q4

e
q5

Any symbol

Note: Omitting to explicitly show error states is just a matter of design convenience

(one that is generally followed for NFAs), and 

i.e., this feature should not be confused with the notion of non-determinism. 

Transitions into a dead state are implicit
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Example #2

 Build an NFA for the following language:

L = { w | w ends in 01}

 ?

 Other examples

 Keyword recognizer (e.g., if, then, else, 

while, for, include, etc.)

 Strings where the first symbol is present 

somewhere later on at least once
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Extension of δ to NFA Paths

 Basis: δ (q,) = {q}

 Induction:
 Let δ (q0,w) = {p1,p2…,pk}

 δ (pi,a) = Si for i=1,2...,k

 Then,   δ (q0,wa) = S1 U S2 U … U Sk 
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Language of an NFA

 An NFA accepts w if there exists at 

least one path from the start state to an 

accepting (or final) state that is labeled 

by w

 L(N) = { w | δ(q0,w) ∩ F ≠ Φ }
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Advantages & Caveats for NFA

 Great for modeling regular expressions  

 String processing - e.g., grep, lexical analyzer

 Could a non-deterministic state machine be 

implemented in practice?
 Probabilistic models could be viewed as extensions of non-

deterministic state machines 

(e.g., toss of a coin, a roll of dice)

 They are not the same though

 A parallel computer could exist in multiple “states” at the same time



Technologies for NFAs

 Micron’s Automata Processor (introduced in 2013)

 2D array of MISD (multiple instruction single data) 

fabric w/ thousands to millions of processing 

elements. 

 1 input symbol = fed to all states (i.e., cores)

 Non-determinism using circuits

 http://www.micronautomata.com/

22

http://www.micronautomata.com/


23

Differences: DFA vs. NFA
 DFA

1. All transitions are 
deterministic
 Each transition leads to 

exactly one state

2. For each state, transition on 
all possible symbols 
(alphabet) should be defined

3. Accepts input if the last state 
visited is in F

4. Sometimes harder to 
construct because of the 
number of states

5. Practical implementation is 
feasible

 NFA

1. Some transitions could be 
non-deterministic
 A transition could lead to a 

subset of states

2. Not all symbol transitions 
need to be defined explicitly (if 
undefined will go to an error 
state – this is just a design 
convenience, not to be 
confused with “non-
determinism”)

3. Accepts input if one of the last 
states is in F

4. Generally easier than a DFA 
to construct

5. Practical implementations 
limited but emerging (e.g., 
Micron automata processor)

But, DFAs and NFAs are equivalent in their power to capture langauges !!
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Equivalence of DFA & NFA

 Theorem:
 A language L is accepted by a DFA if and only if

it is accepted by an NFA.

 Proof:
1. If part:

 Prove by showing every NFA can be converted to an 
equivalent DFA (in the next few slides…)

2. Only-if part is trivial:
 Every DFA is a special case of an NFA where each 

state has exactly one transition for every input symbol. 
Therefore, if L is accepted by a DFA, it is accepted by 
a corresponding NFA.

Should be 

true for 

any L
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Proof for the if-part

 If-part: A language L is accepted by a DFA if 
it is accepted by an NFA

 rephrasing…

 Given any NFA N, we can construct a DFA D 
such that L(N)=L(D)

 How to convert an NFA into a DFA?
 Observation: In an NFA, each transition maps to a 

subset of states 

 Idea: Represent:

each “subset of NFA_states”  a single “DFA_state”

Subset construction
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NFA to DFA by subset construction

 Let N = {QN,∑,δN,q0,FN}

 Goal: Build D={QD,∑,δD,{q0},FD} s.t. 

L(D)=L(N)

 Construction:

1. QD= all subsets of QN (i.e., power set)

2. FD=set of subsets S of QN s.t. S∩FN≠Φ

3. δD: for each subset S of QN and for each input 

symbol a in ∑: 

 δD(S,a) = U δN(p,a)
p in s
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NFA to DFA construction: Example

 L = {w | w ends in 01}

q0 q1

0

0,1

q2

1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

Ø Ø Ø

[q0] {q0,q1} {q0}

[q1] Ø {q2}

*[q2] Ø Ø

[q0,q1] {q0,q1} {q0,q2}

*[q0,q2] {q0,q1} {q0}

*[q1,q2] Ø {q2}

*[q0,q1,q2] {q0,q1} {q0,q2}

1. Determine transitions

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Idea: To avoid enumerating all of 

power set, do 

“lazy creation of states”

2.        Retain only those states 

reachable from {q0}

0. Enumerate all possible subsets
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NFA to DFA: Repeating the example 

using LAZY CREATION

 L = {w | w ends in 01}

q0 q1

0

0,1

q2

1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Main Idea:

Introduce states as you go

(on a need basis)
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Correctness of subset construction

Theorem: If D is the DFA constructed 

from NFA N by subset construction, 

then L(D)=L(N)

 Proof:

 Show that δD({q0},w) ≡  δN(q0,w} , for all w

 Using induction on w’s length:

 Let w = xa

 δD({q0},xa) ≡ δD( δN(q0,x}, a ) ≡ δN(q0,w}
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A bad case where 

#states(DFA)>>#states(NFA)

 L = {w | w is a binary string s.t., the kth symbol 
from its end is a 1}

 NFA has k+1 states

 But an equivalent DFA needs to have at least 2k

states

(Pigeon hole principle)
 m holes and >m pigeons

 => at least one hole has to contain two or more pigeons
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Applications 

 Text indexing 

 inverted indexing

 For each unique word in the database, store all 

locations that contain it using an NFA or a DFA

 Find pattern P in text T

 Example: Google querying

 Extensions of this idea:

 PATRICIA tree, suffix tree 



A few subtle properties of 

DFAs and NFAs

 The machine never really terminates. 

 It is always waiting for the next input symbol or making 

transitions.

 The machine decides when to consume the next symbol from 

the input and when to ignore it.

 (but the machine can never skip a symbol)

 => A transition can happen even without really consuming an 

input symbol (think of consuming  as a free token) – if this 

happens, then it becomes an -NFA (see next few slides).

 A single transition cannot consume more than one (non-) 

symbol.

32
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FA with -Transitions 

 We can allow explicit -transitions in finite 

automata

 i.e., a transition from one state to another state 

without consuming any additional input symbol 

 Explicit -transitions between different states 

introduce non-determinism.

 Makes it easier sometimes to construct NFAs

Definition:  -NFAs are those NFAs with at 

least one explicit -transition defined.

  -NFAs have one more column in their 

transition table
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Example of an -NFA

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1


*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

 -closure of a state q, 

ECLOSE(q), is the set 

of all states (including 

itself) that can be 

reached from q by 

repeatedly making an 

arbitrary number of -
transitions.  

start

q0 q1

0

0,1

1
q2

q’0



ECLOSE(q1)

ECLOSE(q2)
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Example of an -NFA

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1


*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

Simulate for w=101:

start

q0 q1

0

0,1

1
q2

q’0


q0’

q0
q0’



q1

0

q2

1

q0

1

Ø

1

x

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their -closure states as well.
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Example of another -NFA

δE 0 1


*q’0 Ø Ø {q’0,q0,q3}

q0 {q0,q1} {q0} {q0,q3}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

q3 Ø {q2} {q3}

Simulate for w=101:

?

start

q0 q1

0

0,1

1
q2

q’0

 

q3

1

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their -closure states as well.
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Equivalency of DFA, NFA, -NFA

 Theorem: A language L is accepted by 

some -NFA if and only if L is accepted by 

some DFA

 Implication:

 DFA ≡ NFA ≡ -NFA

 (all accept Regular Languages)
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Eliminating -transitions

Let E = {QE,∑,δE,q0,FE} be an -NFA

Goal: To build DFA D={QD,∑,δD,{qD},FD} s.t. L(D)=L(E)

Construction:
1. QD= all reachable subsets of QE factoring in -closures

2. qD = ECLOSE(q0)

3. FD=subsets S in QD s.t. S∩FE≠Φ

4. δD: for each subset S of QE and for each input symbol 
a∑: 

 Let R= U δE(p,a) // go to destination states

 δD(S,a) = U ECLOSE(r) // from there, take a union
of all their -closures

p in s

r in R

Reading: Section 2.5.5 in book
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Example: -NFA  DFA

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1

0

0,1

1
q2

q’0



δE 0 1


*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0}

…
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Example: -NFA  DFA

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1

0

0,1

1
q2

q’0



δE 0 1


*q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0} {q0,q1} {q0}

{q0,q1} {q0,q1} {q0,q2}

{q0} {q0,q1} {q0}

*{q0,q2} {q0,q1} {q0}

{q’0, q0}

0

start

{q0,q1} {q0,q2}1

0

q0

1

1

0

0

1

unionECLOSE
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Summary

 DFA

 Definition

 Transition diagrams & tables

 Regular language

 NFA

 Definition

 Transition diagrams & tables

 DFA vs. NFA

 NFA to DFA conversion using subset construction

 Equivalency of DFA & NFA

 Removal of redundant states and including dead states

 -transitions in NFA

 Pigeon hole principles

 Text searching applications
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Regular Expressions
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Regular Expressions vs. Finite 

Automata

 Offers a declarative way to express the pattern of any 
string we want to accept
 E.g., 01*+ 10*

 Automata => more machine-like 
< input: string  , output: [accept/reject]  >

 Regular expressions => more program syntax-like

 Unix environments heavily use regular expressions 
 E.g., bash shell, grep, vi & other editors, sed

 Perl scripting – good for string processing

 Lexical analyzers such as Lex or Flex
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Regular Expressions

Regular 

expressions

Finite Automata

(DFA, NFA, -NFA)

Regular

Languages

=

Automata/machines
Syntactical 

expressions

Formal language 

classes
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Language Operators

 Union of two languages:

 L U M = all strings that are either in L or M

 Note: A union of two languages produces a third 

language

 Concatenation of two languages:

 L . M = all strings that are of the form xy 

s.t., x  L and y  M

 The dot operator is usually omitted 

 i.e., LM is same as L.M
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Kleene Closure (the * operator)

 Kleene Closure of a given language L:

 L0= {}

 L1= {w | for some w  L}

 L2= { w1w2 | w1  L, w2  L (duplicates allowed)}

 Li= { w1w2…wi | all w’s chosen are  L (duplicates allowed)}

 (Note: the choice of each wi is independent)

 L* = Ui≥0 Li (arbitrary number of concatenations)

Example:

 Let L = { 1, 00}

 L0= {}
 L1= {1,00}

 L2= {11,100,001,0000}

 L3= {111,1100,1001,10000,000000,00001,00100,0011}

 L* = L0 U L1 U L2 U …

“i” here refers to how many strings to concatenate from the parent 

language L to produce strings in the language Li
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Kleene Closure (special notes)

 L* is an infinite set iff |L|≥1 and L≠{}

 If L={}, then L* = {}

 If L = Φ, then L* = {}

Σ* denotes the set of all words over an 
alphabet Σ
 Therefore, an abbreviated way of saying 

there is an arbitrary language L over an 
alphabet Σ is: 

 L  Σ*

Why?

Why?

Why?
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Building Regular Expressions 

 Let E be a regular expression and the 

language represented by E is L(E)

 Then:

 (E) = E

 L(E + F) = L(E) U L(F)

 L(E F) = L(E) L(F)

 L(E*) = (L(E))*



8

Example: how to use these regular 

expression properties and language 

operators?

 L = { w | w is a binary string which does not contain two consecutive 0s or 
two consecutive 1s anywhere)
 E.g., w = 01010101 is in L, while w = 10010 is not in L

 Goal: Build a regular expression for L

 Four cases for w:
 Case A: w starts with 0 and |w| is even 

 Case B: w starts with 1 and |w| is even 

 Case C: w starts with 0 and |w| is odd

 Case D: w starts with 1 and |w| is odd 

 Regular expression for the four cases:
 Case A: (01)*

 Case B: (10)*

 Case C: 0(10)*

 Case D: 1(01)*

 Since L is the union of all 4 cases: 
 Reg Exp for L = (01)* + (10)* + 0(10)* + 1(01)*

 If we introduce  then the regular expression can be simplified to:

 Reg Exp for L = ( +1)(01)*( +0)
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Precedence of Operators

 Highest to lowest

 * operator (star)

 . (concatenation) 

 + operator

 Example: 

 01* + 1 = ( 0 . ((1)*) ) +  1
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Finite Automata (FA) & Regular 

Expressions (Reg Ex)

 To show that they are interchangeable, 
consider the following theorems:
 Theorem 1: For every DFA A there exists a regular 

expression R such that L(R)=L(A)

 Theorem 2: For every regular expression R there 
exists an  -NFA E such that L(E)=L(R)

 -NFA NFA

DFAReg Ex

Theorem 2

Theorem 1

Proofs 

in the book

Kleene Theorem
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DFA to RE construction

Reg ExDFA
Theorem 1

Example:

q0 q1 q2
0 1

1 0 0,1

(1*) 0 (0*) 1 (0 + 1)*

Informally, trace all distinct paths (traversing cycles only once) 

from the start state to each of the final states 

and enumerate all the expressions along the way

1*00*1(0+1)*

00* 1* 1 (0+1)*

Q) What is the language?
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RE to -NFA construction 

 -NFAReg Ex
Theorem 2

Example: (0+1)*01(0+1)*

0

1













 0 1

0

1













(0+1)* 01 (0+1)*
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Algebraic Laws of Regular 

Expressions

 Commutative:
 E+F = F+E

 Associative:
 (E+F)+G = E+(F+G)

 (EF)G = E(FG)

 Identity:
 E+Φ = E

  E = E  = E

 Annihilator:
 ΦE = EΦ = Φ
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Algebraic Laws…

 Distributive:
 E(F+G) = EF + EG 

 (F+G)E = FE+GE

 Idempotent: E + E = E

 Involving Kleene closures:
 (E*)* = E* 

 Φ* = 

 * = 

 E+ =EE*

 E? =  +E
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True or False?

Let R and S be two regular expressions. Then:

1. ((R*)*)* = R* ?

2. (R+S)* = R* + S* ?

3. (RS + R)* RS = (RR*S)* ?
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Summary

 Regular expressions 

 Equivalence to finite automata

 DFA to regular expression conversion

 Regular expression to -NFA 
conversion

 Algebraic laws of regular expressions

 Unix regular expressions and Lexical 
Analyzer 
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Properties of Regular 

Languages
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Topics

1) How to prove whether a given 

language is regular or not?

2) Closure properties of regular 

languages

3) Minimization of DFAs
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Some languages are not 

regular

When is a language is regular? 
if we are able to construct one of the 

following: DFA or NFA or  -NFA or regular 
expression

When is it not?
If we can show that no FA can be built for a 
language
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How to prove languages are 

not regular?

What if we cannot come up with any FA? 

A) Can it be language that is not regular? 

B) Or is it that we tried wrong approaches?

How do we decisively prove that a language 

is not regular?

“The hardest thing of all is to find a black cat in a dark room, 

especially if there is no cat!”  -Confucius
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Example of a non-regular 

language 

Let L = {w | w is of the form 0n1n , for all n≥0} 

 Hypothesis: L is not regular

 Intuitive rationale: How do you keep track 

of a running count in an FA?

 A more formal rationale:
 By contradition, if L is regular then there should exist a DFA 

for L. 

 Let k = number of states in that DFA.

 Consider the special word w= 0k1k => w  L

 DFA is in some state pi, after consuming the first i symbols in 

w
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Rationale… 

 Let {p0,p1,… pk} be the sequence of states that the 

DFA should have visited after consuming the first 

k symbols in w which is 0k

 But there are only k states in the DFA!

 ==> at least one state should repeat somewhere 

along the path    (by ++ Principle) 

 ==> Let  the repeating state be pi=pJ for i < j

 ==> We can fool the DFA by inputing 0(k-(j-i))1k and 

still get it to accept  (note: k-(j-i) is at most k-1).

 ==> DFA accepts strings w/ unequal number of 0s 

and 1s, implying that the DFA is wrong!

Uses Pigeon Hole Principle



The Pumping Lemma for 

Regular Languages

What it is? 

The Pumping Lemma is a property 

of all regular languages.

How is it used? 

A technique that is used to show 

that a given language is not regular
7
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Pumping Lemma for Regular 

Languages

Let L be a regular language

Then there exists some constant N such that for 
every string w  L s.t. |w|≥N, there exists a 
way to break w into three parts, w=xyz, 
such that:

1. y≠ 

2. |xy|≤N

3. For all k≥0, all strings of the form xykz  L

This property should hold for all regular languages.

Definition: N is called the “Pumping Lemma Constant”
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Pumping Lemma: Proof
 L is regular => it should have a DFA. 

 Set N := number of states in the DFA

 Any string wL, s.t. |w|≥N, should have the 

form: w=a1a2…am, where m≥N

 Let the states traversed after reading the first 

N symbols be:    {p0,p1,… pN}

 ==> There are N+1 p-states, while there are only 

N DFA states

 ==> at least one state has to repeat 

i.e, pi= pJwhere 0≤i<j≤N (by PHP) 
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Pumping Lemma: Proof…

 => We should be able to break w=xyz as follows:
 x=a1a2..ai;  y=ai+1ai+2..aJ;  z=aJ+1aJ+2..am

 x’s path will be p0..pi

 y’s path will be pi pi+1..pJ (but pi=pJ implying a loop)

 z’s path will be pJpJ+1..pm

 Now consider another 

string wk=xykz , where k≥0

 Case k=0

 DFA will reach the accept state pm

 Case k>0

 DFA will loop for yk, and finally reach the accept state pm for z

 In either case, wk L 

yk (for k loops)

p0 pi pm

x z

=pj

This proves part (3) of the lemma
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Pumping Lemma: Proof…

 For part (1): 

 Since i<j, y ≠ 

 For part (2):

 By PHP, the repetition of states has to 
occur within the first N symbols in w

 ==> |xy|≤N

p0 pi pm

x z

yk (for k loops)

=pj
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The Purpose of the Pumping 

Lemma for RL

 To prove that some languages cannot 

be regular. 
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How to use the pumping 

lemma?

Think of playing a 2 person game
 Role 1: We claim that the language cannot 

be regular

 Role 2: An adversary who claims the 
language is regular

 We show that the adversary’s statement will 
lead to a contradiction that implyies pumping 
lemma cannot hold for the language.

 We win!!
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How to use the pumping 

lemma? (The Steps)

1. (we) L is not regular.

2. (adv.) Claims that L is regular and gives you 
a value for N as its P/L constant

3. (we) Using N, choose a string w  L s.t., 
1. |w| ≥ N, 

2. Using w as the template, construct other words 
wk of the form xykz and show that at least one 
such wk  L 

=> this implies we have successfully broken the 
pumping lemma for the language, and hence that the 
adversary is wrong.

(Note: In this process, we may have to try many values of k, 
starting with k=0, and then 2, 3, .. so on, until wk  L )



Using the Pumping Lemma 

 What WE do?

3. Using N, we construct 

our template string w

4. Demonstrate to the 

adversary, either 

through pumping up or 

down on w, that some 

string wk  L

(this should happen 

regardless of w=xyz)

 What the Adversary 

does?

1. Claims L is regular

2. Provides N

15

Note: We don’t have any control over N, except that it is positive.

We also don’t have any control over how to split w=xyz, 

but xyz should respect the P/L conditions (1) and (2).
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Example of using the Pumping Lemma to 

prove that a language is not regular

Let Leq = {w | w is a binary string with equal number 
of 1s and 0s} 

 Your Claim: Leq is not regular

 Proof: 

 By contradiction, let Leq be regular

 P/L constant should exist

 Let N = that P/L constant

 Consider input w = 0N1N

(your choice for the template string)

 By pumping lemma, we should be able to break 
w=xyz, such that:

1) y≠ 

2) |xy|≤N

3) For all k≥0, the string xykz is also in L

 adv.

 you

 adv.

you

Note: This N can be anything (need not necessarily be the #states in the DFA. 

It’s the adversary’s choice.)
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Proof…

 Because |xy|≤N, xy should contain only 0s

 (This and because y≠ , implies y=0+)

 Therefore x can contain at most N-1 0s

 Also, all the N 1s must be inside z

 By (3), any string of the form xykz  Leq for all k≥0 

 Case k=0: xz has at most N-1 0s but has N 1s

 Therefore, xy0z  Leq

 This violates the P/L (a contradiction)

Another way of proving this will be to show that if 

the #0s is arbitrarily pumped up (e.g., k=2),

then the #0s will become exceed the #1s 

 you

Template string w = 0N1N  = 00  ….     011  …    1
N N

Setting k=0 is 

referred to as

“pumping down”

Setting k>1 is 

referred to as

“pumping up”
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Exercise 2

Prove L = {0n10n | n≥ 1} is not regular

Note: This n is not to be confused with the pumping 

lemma constant N. That can be different.

In other words, the above question is same as 

proving:

 L = {0m10m | m≥ 1} is not regular
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Example 3: Pumping Lemma

Claim: L = { 0i | i is a perfect square} is not regular

 Proof:
 By contradiction, let L be regular. 

 P/L should apply

 Let N = P/L constant

 Choose w=0N2

 By pumping lemma, w=xyz satisfying all three rules

 By rules (1) & (2), y has between 1 and N 0s

 By rule (3), any string of the form xykz is also in L for all k≥0 

 Case k=0: 
 #zeros (xy0z) = #zeros (xyz) - #zeros (y)

 N2 – N    ≤     #zeros (xy0z)    ≤   N2 - 1

 (N-1)2 <   N2 - N   ≤    #zeros (xy0z)     ≤    N2 - 1   <   N2

 xy0z  L

 But the above will complete the proof ONLY IF N>1. 

 … (proof contd.. Next slide)
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Example 3: Pumping Lemma

 (proof contd…)
 If the adversary pick N=1, then (N-1)2 ≤   N2 – N, and therefore the #zeros(xy0z) 

could end up being a perfect square!

 This means that pumping down (i.e., setting k=0) is not giving us the proof!

 So lets try pumping up next…

 Case k=2:
 #zeros (xy2z) =   #zeros (xyz) +  #zeros (y)

 N2 + 1    ≤     #zeros (xy2z)    ≤   N2 + N

 N2 <   N2 + 1 ≤    #zeros (xy2z)     ≤    N2 + N   <   (N+1)2

 xy2z  L

 (Notice that the above should hold for all possible N values of N>0. Therefore, this 
completes the proof.)



Closure properties of Regular 

Languages

21
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Closure properties for Regular 

Languages (RL)

 Closure property:
 If a set of regular languages are combined using 

an operator, then the resulting language is also 
regular

 Regular languages are closed under:
 Union, intersection, complement, difference

 Reversal

 Kleene closure

 Concatenation

 Homomorphism

 Inverse homomorphism

This is different 

from Kleene 

closure

Now, lets prove all of this!
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RLs are closed under union 

 IF L and M are two RLs THEN:

 they both have two corresponding regular 

expressions, R and S respectively

 (L U M) can be represented using the regular 

expression R+S 

 Therefore, (L U M) is also regular

How can this be proved using FAs?
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RLs are closed under 

complementation

q0

qF1

qF2

qFk

…

qi

DFA for L

q0

qF1

qF2

qFk

…

qi

DFA for L

 If L is an RL over ∑, then L=∑*-L

 To show L is also regular, make the following 
construction Convert every final state into non-final, and 

every non-final state into a final state

Assumes q0 is a non-final state. If not, do the opposite.
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RLs are closed under 

intersection

 A quick, indirect way to prove:

 By DeMorgan’s law: 

 L ∩ M = (L U M) 

 Since we know RLs are closed under union 

and complementation, they are also closed 

under intersection

 A more direct way would be construct a 

finite automaton for L ∩ M
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DFA construction for L ∩ M

 AL = DFA for L = {QL, ∑ , qL,FL, δL }

 AM = DFA for M = {QM, ∑ , qM,FM, δM }

 Build AL ∩ M = {QLx QM,∑, (qL,qM), FLx FM,δ} 
such that:
 δ((p,q),a) = (δL(p,a), δM(q,a)), where p in QL, and q 

in QM

 This construction ensures that a string w will 
be accepted if and only if w reaches an 
accepting state in both input DFAs. 
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DFA construction for L ∩ M

q0

qF1

qF2

…

qi

DFA for L

p0

pF1

pF2

…

pi

DFA for M

qj

a

pj

a

(qF1 ,pF1)

…

DFA for LM

a
(qi ,pi) (qj ,pj)(q0 ,p0)
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RLs are closed under set 

difference

 We observe:

 L - M = L ∩ M

 Therefore, L - M is also regular

Closed under intersection

Closed under 

complementation
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RLs are closed under reversal

Reversal of a string w is denoted by wR

 E.g., w=00111, wR=11100

Reversal of a language:

 LR = The language generated by 
reversing all strings in L

Theorem: If L is regular then LR is also 
regular
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 -NFA Construction for LR

q0

qF1

qF2

qFk

…

qi qj

a

DFA for L

New -NFA for LR

New start

state
q’0





Make the

old start state

as the only new 

final state

Reverse all transitions

Convert the old set of final states

into non-final states 

What to do if q0 was

one of the final states

in the input DFA? 
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If L is regular, LR is regular (proof 

using regular expressions)

 Let E be a regular expression for L

 Given E, how to build ER? 

 Basis: If E= , Ø, or a, then ER=E

 Induction: Every part of E (refer to the part as “F”) 
can be in only one of the three following forms:

1. F = F1+F2

 FR = F1
R+F2

R

2. F = F1F2

 FR = F2
RF1

R

3. F = (F1)*

 (FR)* = (F1
R)*
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Homomorphisms

 Substitute each symbol in ∑ (main alphabet) 
by a corresponding string in T (another 
alphabet)
 h: ∑--->T*

 Example:
 Let ∑={0,1} and T={a,b} 

 Let a homomorphic function h on ∑ be:
 h(0)=ab, h(1)=

 If w=10110, then h(w) = abab = abab

 In general,
 h(w) = h(a1) h(a2)… h(an)
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FA Construction for h(L)

q0

qF1

qF2

qFk

…
qi qj

a

DFA for L

- Build a new FA that simulates h(a) for every symbol a transition in 

the above DFA

- The resulting FA may or may not be a DFA, but will be a FA for h(L)

Replace every edge

“a” by 

a path labeled h(a) 

in the new DFA

Given a DFA for L, how to convert it into an FA for h(L)?

h(a)
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Inverse homomorphism

 Let h: ∑--->T*

 Let M be a language over alphabet T 

 h-1(M) = {w | w  ∑* s.t., h(w)  M }

Claim: If M is regular, then so is h-1(M)

 Proof:
 Let A be a DFA for M

 Construct another DFA A’ which encodes h-1(M)

 A’ is an exact replica of A, except that its transition 
functions are s.t. for any input symbol a in ∑, A’ 
will simulate h(a) in A. 
 δ(p,a) = δ(p,h(a))

The set of strings in ∑* 

whose homomorphic translation 

results in the strings of M 

Given a DFA for M, how to convert it into an FA for h-1(M)?
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Decision properties of regular 

languages

Decision 

problem 

solver

Input

(generally

a question)

Yes

No

Any “decision problem” looks like this:
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Membership question

 Decision Problem: Given L, is w in L?

 Possible answers: Yes or No

 Approach:

1. Build a DFA for L

2. Input w to the DFA

3. If the DFA ends in an accepting state, 

then yes; otherwise no.
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Emptiness test

 Decision Problem: Is L=Ø ?

 Approach:
On a DFA for L:

1. From the start state, run a reachability test, which 
returns:
1. success: if there is at least one final state that is 

reachable from the start state

2. failure: otherwise

2. L=Ø if and only if the reachability test fails

How to implement the reachability test?
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Finiteness

 Decision Problem: Is L finite or infinite?

 Approach:

On a DFA for L:

1. Remove all states unreachable from the start state

2. Remove all states that cannot lead to any accepting state.

3. After removal, check for cycles in the resulting FA

4. L is finite if there are no cycles; otherwise it is infinite

 Another approach

 Build a regular expression and look for Kleene closure

How to implement steps 2 and 3?



Finiteness test - examples
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Ex 2) Is the language of this DFA finite or infinite?

1

0

Ex 1) Is the language of this DFA finite or infinite?

X

X

q6

0
1X

FINITE

INFINITE
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Equivalence & Minimization of 

DFAs
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Applications of interest

 Comparing two DFAs:
 L(DFA1) == L(DFA2)?

 How to minimize a DFA?
1. Remove unreachable states

2. Identify & condense equivalent states into one
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When to call two states in a DFA 

“equivalent”?

Two states p and q are said to be 

equivalent iff: 
i) Any string w accepted by starting at p is also accepted by 

starting at q; 

i) Any string w rejected by starting at p is also rejected by 

starting at q.

P
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s
!

p

q
AND

w

p

q

w

 p≡q
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Computing equivalent states 

in a DFA

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

Table Filling Algorithm

A =

B = =

C x x =

D x x x =

E x x x x =

F x x x x x =

G x x x = x x =

H x x = x x x x =

A B C D E F G H

Pass #0

1. Mark  accepting states ≠ non-accepting states  

Pass #1

1. Compare every pair of states

2. Distinguish by one symbol transition

3. Mark = or ≠ or blank(tbd)

Pass #2

1. Compare every pair of states

2. Distinguish by up to two symbol transitions (until different or same or tbd) 

…. 

(keep repeating until table complete)
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C =

D =

E =

F =

G =

H =

A B C D E F G H
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C =

D =

E X X X X =

F X =

G X =

H X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X =

D X =

E X X X X =

F X =

G X X =

H X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X X =

D X X =

E X X X X =

F X =

G X X X =

H X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X =

G X X X X =

H X X = X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X =

H X X = X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X X =

H X X = X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B = =

C X X =

D X X X =

E X X X X =

F X X X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Pass 1: 

Look 1- hop away for distinguishing states or strings

3. Pass 2:

Look 1-hop away again for distinguishing states or strings

continue…. 
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

A =

B = =

C X X =

D X X X =

E X X X X =

F X X X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

Equivalences:

• A=B

• C=H

• D=G      

1. Mark X between accepting vs. non-accepting state

2. Pass 1: 

Look 1- hop away for distinguishing states or strings

3. Pass 2:

Look 1-hop away again for distinguishing states or strings

continue…. 
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Table Filling Algorithm - step 

by step

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1 A C E

D F

0

1

1

0

0

0

1

10

1

Equivalences:

• A=B

• C=H

• D=G      

Retrain only one copy for 

each equivalence set of states
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Table Filling Algorithm –

special case

A =

B =

C =

D =

E =

F =

G =

H =

A B C D E F G H
Q) What happens if the input DFA

has more than one final state?

Can all final states initially be treated

as equivalent to one another?

A C E G

B D F H

0

1

1

1

1

11

10

0

0

0

0

0

0

1

?
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How to minimize a DFA?

 Goal: Minimize the number of states in 
a DFA

 Algorithm:

1. Eliminate states unreachable from the 
start state

2. Identify and remove equivalent states

3. Output the resultant DFA 

Depth-first traversal from the start state

Table filling algorithm

Putting it all together …
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Are Two DFAs Equivalent?

q0 …

q0’ …

DFA1

DFA2

Unified DFA

1. Make a new dummy DFA by just putting together both DFAs

2. Run table-filling algorithm on the unified DFA

3. IF the start states of both DFAs are found to be equivalent, 

THEN: DFA1≡ DFA2

ELSE: different

Is q0 ≡ q0’?

: if yes, then DFA1≡DFA2

: else, not equiv.
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Summary

 How to prove languages are not regular?

 Pumping lemma & its applications

 Closure properties of regular languages

 Simplification of DFAs

 How to remove unreachable states?

 How to identify and collapse equivalent states?

 How to minimize a DFA?

 How to tell whether two DFAs are equivalent?
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Topics

1) How to prove whether a given 

language is regular or not?
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Some languages are not 

regular

When is a language is regular? 
if we are able to construct one of the 

following: DFA or NFA or  -NFA or regular 
expression

When is it not?
If we can show that no FA can be built for a 
language
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How to prove languages are 

not regular?

What if we cannot come up with any FA? 

A) Can it be language that is not regular? 

B) Or is it that we tried wrong approaches?

How do we decisively prove that a language 

is not regular?

“The hardest thing of all is to find a black cat in a dark room, 

especially if there is no cat!”  -Confucius



The Pumping Lemma for 

Regular Languages

What it is? 

The Pumping Lemma is a property 

of all regular languages.

How is it used? 

A technique that is used to show 

that a given language is not regular
4
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Pumping Lemma for Regular 

Languages

Let L be a regular language

Then there exists some constant N such that for 
every string w  L s.t. |w|≥N, there exists a 
way to break w into three parts, w=xyz, 
such that:

1. y≠ 

2. |xy|≤N

3. For all k≥0, all strings of the form xykz  L

This property should hold for all regular languages.

Definition: N is called the “Pumping Lemma Constant”
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Pumping Lemma: Proof
 L is regular => it should have a DFA. 

 Set N := number of states in the DFA

 Any string wL, s.t. |w|≥N, should have the 

form: w=a1a2…am, where m≥N

 Let the states traversed after reading the first 

N symbols be:    {p0,p1,… pN}

 ==> There are N+1 p-states, while there are only 

N DFA states

 ==> at least one state has to repeat 

i.e, pi= pJwhere 0≤i<j≤N
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Pumping Lemma: Proof…

 => We should be able to break w=xyz as follows:
 x=a1a2..ai;  y=ai+1ai+2..aJ;  z=aJ+1aJ+2..am

 x’s path will be p0..pi

 y’s path will be pi pi+1..pJ (but pi=pJ implying a loop)

 z’s path will be pJpJ+1..pm

 Now consider another 

string wk=xykz , where k≥0

 Case k=0

 DFA will reach the accept state pm

 Case k>0

 DFA will loop for yk, and finally reach the accept state pm for z

 In either case, wk L 

yk (for k loops)

p0 pi pm

x z

=pj

This proves part (3) of the lemma
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Pumping Lemma: Proof…

 For part (1): 

 Since i<j, y ≠ 

 For part (2):

 By PHP, the repetition of states has to 
occur within the first N symbols in w

 ==> |xy|≤N

p0 pi pm

x z

yk (for k loops)

=pj
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The Purpose of the Pumping 

Lemma for RL

 To prove that some languages cannot 

be regular. 
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How to use the pumping 

lemma?

Think of playing a 2 person game
 Role 1: We claim that the language cannot 

be regular

 Role 2: An adversary who claims the 
language is regular

 We show that the adversary’s statement will 
lead to a contradiction that implies pumping 
lemma cannot hold for the language.

 We win!!
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How to use the pumping 

lemma? (The Steps)

1. (we) L is not regular.

2. (adv.) Claims that L is regular and gives you 
a value for N as its P/L constant

3. (we) Using N, choose a string w  L s.t., 
1. |w| ≥ N, 

2. Using w as the template, construct other words 
wk of the form xykz and show that at least one 
such wk  L 

=> this implies we have successfully broken the 
pumping lemma for the language, and hence that the 
adversary is wrong.

(Note: In this process, we may have to try many values of k, 
starting with k=0, and then 2, 3, .. so on, until wk  L )



Using the Pumping Lemma 

 What WE do?

3. Using N, we construct 

our template string w

4. Demonstrate to the 

adversary, either 

through pumping up or 

down on w, that some 

string wk  L

(this should happen 

regardless of w=xyz)

 What the Adversary 

does?

1. Claims L is regular

2. Provides N

12

Note: We don’t have any control over N, except that it is positive.

We also don’t have any control over how to split w=xyz, 

but xyz should respect the P/L conditions (1) and (2).
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Example of using the Pumping Lemma to 

prove that a language is not regular

Let Leq = {w | w is a binary string with equal number 
of 1s and 0s} 

 Your Claim: Leq is not regular

 Proof: 

 By contradiction, let Leq be regular

 P/L constant should exist

 Let N = that P/L constant

 Consider input w = 0N1N

(your choice for the template string)

 By pumping lemma, we should be able to break 
w=xyz, such that:

1) y≠ 

2) |xy|≤N

3) For all k≥0, the string xykz is also in L

 adv.

 you

 adv.

you

Note: This N can be anything (need not necessarily be the #states in the DFA. 

It’s the adversary’s choice.)
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Proof…

 Because |xy|≤N, xy should contain only 0s

 (This and because y≠ , implies y=0+)

 Therefore x can contain at most N-1 0s

 Also, all the N 1s must be inside z

 By (3), any string of the form xykz  Leq for all k≥0 

 Case k=0: xz has at most N-1 0s but has N 1s

 Therefore, xy0z  Leq

 This violates the P/L (a contradiction)

Another way of proving this will be to show that if 

the #0s is arbitrarily pumped up (e.g., k=2),

then the #0s will become exceed the #1s 

 you

Template string w = 0N1N  = 00  ….     011  …    1
N N

Setting k=0 is 

referred to as

“pumping down”

Setting k>1 is 

referred to as

“pumping up”
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Exercise 2

Prove L = {0n10n | n≥ 1} is not regular

Note: This n is not to be confused with the pumping 

lemma constant N. That can be different.

In other words, the above question is same as 

proving:

 L = {0m10m | m≥ 1} is not regular
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Example 3: Pumping Lemma

Claim: L = { 0i | i is a perfect square} is not regular

 Proof:
 By contradiction, let L be regular. 

 P/L should apply

 Let N = P/L constant

 Choose w=0N2

 By pumping lemma, w=xyz satisfying all three rules

 By rules (1) & (2), y has between 1 and N 0s

 By rule (3), any string of the form xykz is also in L for all k≥0 

 Case k=0: 
 #zeros (xy0z) = #zeros (xyz) - #zeros (y)

 N2 – N    ≤     #zeros (xy0z)    ≤   N2 - 1

 (N-1)2 <   N2 - N   ≤    #zeros (xy0z)     ≤    N2 - 1   <   N2

 xy0z  L

 But the above will complete the proof ONLY IF N>1. 

 … (proof contd.. Next slide)
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Example 3: Pumping Lemma

 (proof contd…)
 If the adversary pick N=1, then (N-1)2 ≤   N2 – N, and therefore the #zeros(xy0z) 

could end up being a perfect square!

 This means that pumping down (i.e., setting k=0) is not giving us the proof!

 So lets try pumping up next…

 Case k=2:
 #zeros (xy2z) =   #zeros (xyz) +  #zeros (y)

 N2 + 1    ≤     #zeros (xy2z)    ≤   N2 + N

 N2 <   N2 + 1 ≤    #zeros (xy2z)     ≤    N2 + N   <   (N+1)2

 xy2z  L

 (Notice that the above should hold for all possible N values of N>0. Therefore, this 
completes the proof.)
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Summary

 How to prove languages are not regular?

 Pumping lemma & its applications



1

Context-Free Languages & 

Grammars

(CFLs & CFGs)



Not all languages are regular

 So what happens to the languages 

which are not regular?

 Can we still come up with a language 

recognizer?

 i.e., something that will accept (or reject) 

strings that belong (or do not belong) to the 

language?

2
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Context-Free Languages

 A language class larger than the class of regular 
languages

 Supports natural, recursive notation called “context-
free grammar”

 Applications:
 Parse trees, compilers

 XML
Regular

(FA/RE)

Context-

free

(PDA/CFG)
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An Example

 A palindrome is a word that reads identical from both 
ends

 E.g., madam, redivider, malayalam, 010010010 

 Let L = { w  | w is a binary palindrome}

 Is L regular?

 No. 

 Proof:
 Let w=0N10N (assuming N to be the p/l constant)

 By Pumping lemma, w can be rewritten as xyz, such that xykz is also L 
(for any k≥0)

 But |xy|≤N and y≠

 ==> y=0+

 ==> xykz will NOT be in L for k=0

 ==> Contradiction



5

But the language of 

palindromes…

is a CFL, because it supports recursive 

substitution (in the form of a CFG)

 This is because we can construct a 

“grammar” like this:

1. A ==> 

2. A ==> 0

3. A ==> 1

4. A ==> 0A0

5. A ==> 1A1

Terminal

Productions
Variable or non-terminal

How does this grammar work?

Same as:

A => 0A0 | 1A1 |  0 | 1 | 



How does the CFG for 

palindromes work?

An input string belongs to the language (i.e., 

accepted) iff it can be generated by the CFG

 Example: w=01110

 G can generate w as follows:

1. A    => 0A0 

2. => 01A10

3. => 01110

6

G:

A => 0A0 | 1A1 |  0 | 1 | 

Generating a string from a grammar:

1. Pick and choose a sequence

of productions that would 

allow us to generate the

string.

2. At every step, substitute one variable

with one of its productions.
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Context-Free Grammar: 

Definition

 A context-free grammar G=(V,T,P,S), where:
 V: set of variables or non-terminals

 T: set of terminals (= alphabet U {})

 P: set of productions, each of which is of the form
V ==> 1 | 2 | …

 Where each i is an arbitrary string of variables and 
terminals

 S ==> start variable

CFG for the language of binary palindromes:
G=({A},{0,1},P,A)
P: A ==> 0 A 0 | 1 A 1 | 0 | 1 | 
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More examples

 Parenthesis matching in code

 Syntax checking

 In scenarios where there is a general need 
for:
 Matching a symbol with another symbol, or 

 Matching a count of one symbol with that of 
another symbol, or

 Recursively substituting one symbol with a string 
of other symbols
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Example #2

 Language of balanced paranthesis

e.g., ()(((())))((()))….

 CFG?
G:

S => (S) | SS | 

How would you “interpret” the string “(((()))()())” using this grammar?
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Example #3

 A grammar for L = {0m1n | m≥n} 

 CFG? G:

S => 0S1 | A

A =>  0A | 

How would you interpret the string “00000111” 

using this grammar?
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Example #4

A program containing if-then(-else) statements

if Condition then Statement else Statement

(Or)

if Condition then Statement

CFG?



More examples

 L1 = {0n | n≥0 }

 L2 = {0n | n≥1 }

 L3={0i1j2k | i=j or j=k, where i,j,k≥0}

 L4={0i1j2k | i=j or i=k, where i,j,k≥1}

12
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Applications of CFLs & CFGs

 Compilers use parsers for syntactic checking

 Parsers can be expressed as CFGs
1. Balancing paranthesis:

 B ==> BB | (B) | Statement

 Statement ==> …

2. If-then-else:
 S ==> SS | if Condition then Statement else Statement |  if Condition 

then Statement | Statement 

 Condition ==> …

 Statement ==> …

3. C paranthesis matching { … }

4. Pascal begin-end matching

5. YACC (Yet Another Compiler-Compiler)
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More applications

 Markup languages

 Nested Tag Matching

 HTML

 <html> …<p> … <a href=…> … </a> </p> … </html>

 XML

 <PC> … <MODEL> … </MODEL> .. <RAM> … 

</RAM> … </PC>
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Tag-Markup Languages

Roll ==> <ROLL> Class Students </ROLL>

Class ==> <CLASS> Text </CLASS>

Text ==> Char Text | Char

Char ==> a | b | … | z | A | B | .. | Z

Students ==> Student Students | 

Student ==> <STUD> Text </STUD>

Here, the left hand side of each production denotes one non-terminals 

(e.g., “Roll”, “Class”, etc.)

Those symbols on the right hand side for which no productions (i.e., 

substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘|’, ‘<‘, ‘>’, “ROLL”, 

etc.)
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Structure of a production

A      =======>      1 | 2 | … | k

head bodyderivation

1. A ==> 1

2. A ==> 2

3. A ==> 3

…

K.   A ==> k

The above is same as:
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CFG conventions

 Terminal symbols <== a, b, c… 

 Non-terminal symbols <== A,B,C, …

 Terminal or non-terminal symbols <== X,Y,Z

 Terminal strings <== w, x, y, z

 Arbitrary strings of terminals and non-
terminals <== , , , ..
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Syntactic Expressions in 

Programming Languages

result = a*b + score + 10 * distance + c

Regular languages have only terminals 
 Reg expression = [a-z][a-z0-1]*

 If we allow only letters a & b, and 0 & 1 for 
constants (for simplification)
 Regular expression = (a+b)(a+b+0+1)*

terminals variables Operators are also

terminals
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String membership

How to say if a string belong to the language 
defined by a CFG?

1. Derivation
 Head to body

2. Recursive inference
 Body to head

Example:
 w = 01110

 Is w a palindrome?

Both are equivalent forms

G:

A => 0A0 | 1A1 |  0 | 1 | 

A  => 0A0 

=> 01A10

=> 01110
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Simple Expressions…

 We can write a CFG for accepting simple 
expressions

 G = (V,T,P,S)
 V = {E,F}

 T = {0,1,a,b,+,*,(,)}

 S = {E}

 P:
 E ==> E+E | E*E | (E) | F 

 F ==> aF | bF | 0F | 1F | a | b | 0 | 1
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Generalization of derivation

 Derivation is head ==> body

 A==>X    (A derives X in a single step) 

 A ==>*G X   (A derives X in a multiple steps)

 Transitivity:

IFA ==>*GB, and B ==>*GC, THEN A ==>*G C
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Context-Free Language

 The language of a CFG, G=(V,T,P,S), 

denoted by L(G), is the set of terminal 

strings that have a derivation from the 

start variable S. 

 L(G) = { w in T* | S ==>*G w } 
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Left-most & Right-most 

Derivation Styles

Derive the string a*(ab+10) from G:

E 

==> E * E

==> F * E 

==> aF * E 

==> a * E

==> a * (E)

==> a * (E + E) 

==> a * (F + E) 

==> a * (aF + E)

==> a * (abF + E)

==> a * (ab + E)

==> a * (ab + F)

==> a * (ab + 1F)

==> a * (ab + 10F)

==> a * (ab + 10)

E =*=>G a*(ab+10)

Left-most 

derivation:

E 

==> E * E

==> E * (E)

==> E * (E + E) 

==> E * (E + F)

==> E * (E + 1F)

==> E * (E + 10F)

==> E * (E + 10)

==> E * (F + 10)

==> E * (aF + 10)

==> E * (abF + 0)

==> E * (ab + 10)

==> F * (ab + 10)

==> aF * (ab + 10)

==> a * (ab + 10)

Right-most 

derivation:

G:

E => E+E | E*E | (E) | F 

F => aF | bF | 0F | 1F | 

Always

substitute

leftmost

variable

Always

substitute

rightmost

variable
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Leftmost vs. Rightmost 

derivations

Q1) For every leftmost derivation, there is a rightmost 

derivation, and vice versa. True or False?

Q2) Does every word generated by a CFG have a 

leftmost and a rightmost derivation?

Q3) Could there be words which have more than one 

leftmost (or rightmost) derivation?

True - will use parse trees to prove this

Yes – easy to prove (reverse direction)

Yes – depending on the grammar



How to prove that your CFGs 

are correct?

(using induction)

25
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CFG & CFL

 Theorem: A string w in (0+1)* is in 

L(Gpal), if and only if, w is a palindrome.

 Proof: 

 Use induction 

 on string length for the IF part

 On length of derivation for the ONLY IF part

Gpal:

A => 0A0 | 1A1 |  0 | 1 | 



Parse trees

27
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Parse Trees

 Each CFG can be represented using a parse tree:

 Each internal node is labeled by a variable in V

 Each leaf is terminal symbol

 For a production, A==>X1X2…Xk, then any internal node 
labeled A has k children which are labeled from X1,X2,…Xk

from left to right 

A

X1 Xi Xk… …

Parse tree for production and all other subsequent productions:

A ==> X1..Xi..Xk
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Examples

E

E + E

F F

a 1

Parse tree for a + 1

A

0 A 0

1 1A



Parse tree for 0110
R

e
c
u
rs

iv
e
 i
n
fe

re
n
c
e

D
e
ri
v
a
ti
o
n

G:

E => E+E | E*E | (E) | F 

F => aF | bF | 0F | 1F | 0 | 1 | a | b

G:

A => 0A0 | 1A1 |  0 | 1 | 
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Parse Trees, Derivations, and 

Recursive Inferences

A

X1 Xi Xk… …

R
e
c
u
rs

iv
e
 

in
fe

re
n
c
e

D
e
ri
v
a
ti
o
n

Production:

A ==> X1..Xi..Xk

Parse tree
Left-most

derivation

Right-most

derivation

Derivation
Recursive

inference
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Interchangeability of different 

CFG representations

 Parse tree ==> left-most derivation
 DFS left to right

 Parse tree ==> right-most derivation
 DFS right to left

 ==> left-most derivation == right-most 
derivation

 Derivation ==> Recursive inference
 Reverse the order of productions

 Recursive inference ==> Parse trees
 bottom-up traversal of parse tree



Connection between CFLs 

and RLs

32
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CFLs & Regular Languages

 A CFG is said to be right-linear if all the 
productions are one of the following two 
forms: A ==> wB (or) A ==> w

 Theorem 1: Every right-linear CFG generates 
a regular language

 Theorem 2: Every regular language has a 
right-linear grammar

 Theorem 3: Left-linear CFGs also represent 
RLs

Where: 

• A & B are variables, 

• w is a string of terminals

What kind of grammars result for regular languages?



Some Examples
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A B C

0

1 0

1 0,1

A B C

0

1 0

1

1

0

A => 01B | C

B => 11B | 0C | 1A

C => 1A | 0 | 1

Right linear CFG? Right linear CFG? Finite Automaton?



Ambiguity in CFGs and CFLs

35
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Ambiguity in CFGs

 A CFG is said to be ambiguous if there 
exists a string which has more than one 
left-most derivation

LM derivation #1:

S => AS

=> 0A1S 
=>0A11S
=> 00111S 
=> 00111

Example:

S ==> AS | 

A ==> A1 | 0A1 | 01

Input string: 00111

Can be derived in two ways

LM derivation #2:

S => AS 
=> A1S  
=> 0A11S
=> 00111S 
=> 00111
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Why does ambiguity matter?

string = a * b + c

E ==> E + E | E * E | (E) | a | b | c | 0 | 1 

• LM derivation #1:

•E => E + E => E * E + E 

==>* a * b + c

• LM derivation #2

•E => E * E => a * E => 

a * E + E ==>* a * b + c

E

E + E

E * E

a b

c

(a*b)+c

E

E * E

E+Ea

b c

a*(b+c)

Values are 

different !!!

The calculated value depends on which 

of the two parse trees is actually used. 
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Removing Ambiguity in 

Expression Evaluations

 It MAY be possible to remove ambiguity for 
some CFLs
 E.g.,, in a CFG for expression evaluation by 

imposing rules & restrictions such as precedence

 This would imply rewrite of the grammar

 Precedence: (), * , +

How will this avoid ambiguity?

E => E + T | T
T => T * F | F
F => I | (E)
I => a | b | c | 0 | 1  

Modified unambiguous version:

Ambiguous version:

E ==> E + E | E * E | (E) | a | b | c | 0 | 1 
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Inherently Ambiguous CFLs

 However, for some languages, it may not be 
possible to remove ambiguity

 A CFL is said to be inherently ambiguous if 
every CFG that describes it is ambiguous

Example:
 L = { anbncmdm | n,m≥ 1} U {anbmcmdn | n,m≥ 1}

 L is inherently ambiguous

 Why?
Input string: anbncndn
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Summary

 Context-free grammars

 Context-free languages

 Productions, derivations, recursive inference, 
parse trees

 Left-most & right-most derivations

 Ambiguous grammars

 Removing ambiguity

 CFL/CFG applications
 parsers, markup languages
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Properties of Context-free 

Languages
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Topics 

1) Simplifying CFGs, Normal forms

2) Pumping lemma for CFLs

3) Closure and decision properties of 

CFLs
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How to “simplify” CFGs?
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Three ways to simplify/clean a CFG

(clean)

1. Eliminate useless symbols

(simplify)

2. Eliminate -productions

3. Eliminate unit productions

A => 

A => B
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Eliminating useless symbols

Grammar cleanup
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Eliminating useless symbols

A symbol X is reachable if there exists:
 S *  X 

A symbol X is generating if there exists: 
 X  * w,

 for some w  T*

For a symbol X to be “useful”, it has to be both 
reachable and generating

 S   *  X  
* w’, for some w’  T*

reachable generating
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Algorithm to detect useless 

symbols

1. First, eliminate all symbols that are not 

generating

2. Next, eliminate all symbols that are not 

reachable 

Is the order of these steps important, 

or can we switch?
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Example: Useless symbols

 SAB | a

 A b

1. A, S are generating

2. B is not generating (and therefore B is useless)

3. ==> Eliminating B… (i.e., remove all productions that involve B)
1. S a

2. A  b

4. Now, A is not reachable and therefore is useless

5. Simplified G: 
1. S  a

What would happen if you reverse the order: 

i.e., test reachability before generating?

Will fail to remove: 

A  b
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Algorithm to find all generating symbols

 Given: G=(V,T,P,S)

 Basis: 

 Every symbol in T is obviously generating.

 Induction:

 Suppose for a production A , where 

is generating

 Then, A is also generating

X  * w
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Algorithm to find all reachable symbols

 Given: G=(V,T,P,S)

 Basis: 

 S is obviously reachable (from itself)

 Induction:

 Suppose for a production A 1 2…k, 
where A is reachable

 Then, all symbols on the right hand side, 
{1,2 ,…k} are also reachable.

S *  X 
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Eliminating -productions

A => 



12

Eliminating -productions

Caveat: It is not possible to eliminate -productions for 

languages which include  in their word set

Theorem: If G=(V,T,P,S) is a CFG for a language L, 

then L\ {} has a CFG without -productions

Definition: A is “nullable” if A* 
 If A is nullable, then any production of the form 

“B CAD” can be simulated by:

 B  CD | CAD
 This can allow us to remove  transitions for A

A  

So we will target the grammar for the rest of the language

What’s the point of removing -productions?
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Algorithm to detect all nullable 

variables

 Basis:

 If A  is a production in G, then A is 

nullable

(note: A can still have other productions)

 Induction:

 If there is a production B C1C2…Ck, 

where every Ci is nullable, then B is also 

nullable
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Eliminating -productions

Given: G=(V,T,P,S)

Algorithm:
1. Detect all nullable variables in G

2. Then construct G1=(V,T,P1,S) as follows:
i. For each production of the form: AX1X2…Xk, where 

k≥1, suppose m out of the k Xi’s are nullable symbols

ii. Then G1 will have 2m versions for this production 
i. i.e, all combinations where each Xi is either present or absent

iii. Alternatively, if a production is of the form: A, then 
remove it
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Example: Eliminating -
productions

 Let L be the language represented by the following CFG G:

i. SAB

ii. AaAA | 

iii. BbBB | 

Goal: To construct G1, which is the grammar for L-{}

 Nullable symbols: {A, B}

 G1 can be constructed from G as follows:

 B  b | bB | bB | bBB

 ==> B  b | bB | bBB

 Similarly, A  a | aA | aAA

 Similarly, S  A | B | AB

 Note: L(G) = L(G1) U {}

G1:

• S  A | B | AB

• A  a | aA | aAA

• B  b | bB | bBB

• S  

+

Simplified

grammar
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Eliminating unit productions

A => B B has to be a variable

What’s the point of removing unit transitions ?

A=>B | …

B=>C | …

C=>D | …

D=>xxx | yyy | zzz

A=>xxx | yyy | zzz | …

B=> xxx | yyy | zzz | …

C=> xxx | yyy | zzz | …

D=>xxx | yyy | zzz

Will save #substitutions 

E.g., 

before after
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Eliminating unit productions
 Unit production is one which is of the form A B, where both A & B 

are variables

 E.g.,
1. E  T | E+T

2. T  F | T*F

3. F  I | (E)

4. I  a | b | Ia | Ib | I0 | I1

 How to eliminate unit productions?

 Replace E T with E  F | T*F

 Then, upon recursive application wherever there is a unit production:
 E F | T*F | E+T (substituting for T)

 E I | (E)  | T*F| E+T (substituting for F)

 E a | b | Ia | Ib | I0 | I1 | (E) | T*F | E+T (substituting for I)

 Now, E has no unit productions

 Similarly, eliminate for the remainder of the unit productions

A  B
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The Unit Pair Algorithm:

to remove unit productions

 Suppose AB1 B2  …  Bn  

 Action: Replace all intermediate productions to produce 
directly
 i.e., A ; B1 ; … Bn  ;

Definition: (A,B) to be a “unit pair” if A*B  

 We can find all unit pairs inductively:
 Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if 

AB is a production, then (A,B) is a unit pair.

 Induction: If (A,B) and (B,C) are unit pairs, and AC is also a unit 
pair. 
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The Unit Pair Algorithm:

to remove unit productions

Input: G=(V,T,P,S)

Goal: to build G1=(V,T,P1,S) devoid of unit 
productions

Algorithm:

1. Find all unit pairs in G

2. For each unit pair (A,B) in G:
1. Add to P1 a new production A, for every 

B which is a non-unit production

2. If a resulting production is already there in P, 
then there is no need to add it.
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Example: eliminating unit 

productions

G:

1. E  T | E+T

2. T  F | T*F

3. F  I | (E)

4. I  a | b | Ia | Ib | I0 | I1

Unit pairs Only non-unit 

productions to be 

added to P1

(E,E) E  E+T

(E,T) E  T*F

(E,F) E  (E)

(E,I) E  a|b|Ia | Ib | I0 | I1

(T,T) T  T*F

(T,F) T  (E)

(T,I) T  a|b| Ia | Ib | I0 | I1

(F,F) F  (E)

(F,I) F  a| b| Ia | Ib | I0 | 

I1

(I,I) I  a| b | Ia | Ib | I0 | 

I1

G1:

1. E  E+T | T*F | (E) | a| b | Ia | Ib | I0 | I1

2. T  T*F | (E) | a| b | Ia | Ib | I0 | I1

3. F  (E) | a| b | Ia | Ib | I0 | I1 

4. I  a | b | Ia | Ib | I0 | I1
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Putting all this together…

 Theorem: If G is a CFG for a language that 
contains at least one string other than , then there 
is another CFG G1, such that L(G1)=L(G) - , and 
G1 has:

 no  -productions

 no unit productions

 no useless symbols

 Algorithm:
Step 1) eliminate  -productions

Step 2) eliminate unit productions

Step 3) eliminate useless symbols

Again, 

the order is

important!

Why?
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Normal Forms
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Why normal forms?

 If all productions of the grammar could be 
expressed in the same form(s), then:

a. It becomes easy to design algorithms that use 
the grammar

b. It becomes easy to show proofs and properties
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Chomsky Normal Form (CNF)

Let G be a CFG for some L-{}

Definition: 

G is said to be in Chomsky Normal Form if all 

its productions are in one of the following 

two forms:
i. A  BC where A,B,C are variables, or

ii. A  a where a is a terminal

 G has no useless symbols

 G has no unit productions

 G has no -productions
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CNF checklist

G1:

1. E  E+T | T*F | (E) | Ia | Ib | I0 | I1

2. T  T*F | (E) | Ia | Ib | I0 | I1

3. F  (E) | Ia | Ib | I0 | I1 

4. I  a | b | Ia | Ib | I0 | I1

Checklist:

• G has no -productions

• G has no unit productions

• G has no useless symbols

• But…

• the normal form for productions is violated

Is this grammar in CNF?

So, the grammar is not in CNF
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How to convert a G into CNF?
 Assumption: G has no -productions, unit productions or useless 

symbols

1) For every terminal a that appears in the body of a production: 
i. create a unique variable, say Xa, with a production Xa  a, and

ii. replace all other instances of a in G by Xa

2) Now, all productions will be in one of the following 
two forms:
 A  B1B2… Bk (k≥3) or Aa

3) Replace each production of the form A  B1B2B3… Bk by:

 AB1C1 C1B2C2 …   Ck-3Bk-2Ck-2 Ck-2Bk-1Bk

B1          C1

B2      C2
and so on…



Example #1
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G:

S => AS | BABC

A => A1 | 0A1 | 01

B => 0B | 0

C => 1C | 1

X0 => 0

X1 => 1

S  => AS | BY1

Y1 => AY2

Y2 => BC

A => AX1 | X0Y3 | X0X1

Y3 => AX1

B => X0B | 0

C => X1C | 1

G in CNF:

All productions are of the form: A=>BC or A=>a
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Example #2

G:

1. E  E+T | T*F | (E) | Ia | Ib | I0 | I1

2. T  T*F | (E) | Ia | Ib | I0 | I1

3. F  (E) | Ia | Ib | I0 | I1 

4. I  a | b | Ia | Ib | I0 | I1

1. E  EX+T | TX*F | X(EX) | IXa | IXb | IX0 | IX1

2. T  TX*F | X(EX) | IXa | IXb | IX0 | IX1

3. F  X(EX) | IXa | IXb | IX0 | IX1

4. I  Xa | Xb | IXa | IXb | IX0 | IX1

5. X+  +

6. X*  *

7. X+  +

8. X(  (

9. …….

Step (1)

1. E  EC1 | TC2 | X(C3 | IXa | IXb | IX0 | IX1

2. C1  X+T

3. C2  X*F

4. C3  EX)

5. T  ..……. 

6. ….



29

Languages with 

 For languages that include , 

 Write down the rest of grammar in CNF 

 Then add production “S => ” at the end

G:

S => AS | BABC 

A => A1 | 0A1 | 01 | 

B => 0B | 0 | 

C => 1C | 1 | 

G in CNF:E.g., consider:

X0 => 0

X1 => 1

S  => AS | BY1

Y1 => AY2

Y2 => BC

A => AX1 | X0Y3 | X0X1

Y3 => AX1

B => X0B | 0

C => X1C | 1

| 
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Other Normal Forms

 Griebach Normal Form (GNF)

 All productions of the form 

A==>a 
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Return of the Pumping Lemma !!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough

e.g., the language of strings of the form  ww
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Why pumping lemma?

 A result that will be useful in proving 

languages that are not CFLs

 (just like we did for regular languages)

 But before we prove the pumping 

lemma for CFLs ….

 Let us first prove an important property 

about parse trees
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The “parse tree theorem”

Given:

 Suppose we have a 
parse tree for a 
string w, according 
to a CNF grammar, 
G=(V,T,P,S)

 Let h be the height of 
the parse tree

Implies:

 |w| ≤ 2h-1

w

Parse tree for w

S  = A0

A1

A2

Ah-1

h 
= tree height

a

In other words, a CNF parse tree’s string yield (w)

can no longer be 2h-1

Observe that any parse tree generated by a CNF will be a 

binary tree, where all internal nodes have exactly two children 

(except those nodes connected to the leaves).
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Proof…The size of parse trees
Proof: (using induction on h)

Basis: h = 1
 Derivation will have to be 

“Sa”  

 |w|= 1 = 21-1 .

Ind. Hyp: h = k-1
 |w|≤ 2k-2

Ind. Step: h = k
S will have exactly two children:  

SAB     

 Heights of A & B subtrees are 
at most h-1

 w = wA wB, where |wA| ≤ 2k-2

and |wB| ≤ 2k-2

 |w| ≤ 2k-1

w

Parse tree for w

S  = A0

h
= height

A B

wA wB

To show: |w| ≤ 2h-1
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Implication of the Parse Tree 

Theorem (assuming CNF)

Fact:

 If the height of a parse tree is h, then

 ==> |w| ≤ 2h-1

Implication:

 If |w| ≥ 2m, then  

 Its parse tree’s height is at least m+1
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The Pumping Lemma for CFLs

Let L be a CFL.

Then there exists a constant N, s.t., 

 if z L s.t. |z|≥N, then we can write 

z=uvwxy, such that:

1. |vwx| ≤ N

2. vx≠

3. For all k≥0: uvkwxky  L

Note: we are pumping in two places (v & x)
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Proof: Pumping Lemma for CFL

 If L=Φ or contains only , then the lemma is 
trivially satisfied (as it cannot be violated)

 For any other L which is a CFL: 
 Let G be a CNF grammar for L

 Let m = number of variables in G

 Choose N=2m.

 Pick any z  L s.t. |z|≥ N

 the parse tree for z should have a height ≥ m+1
(by the parse tree theorem)
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Parse tree for z

z

S  = A0

A1

A2

Ah-1

h ≥ m+1

z = uvwxy

S  = A0

Ai

Aj

h ≥ m+1

u

w

yv x

• Therefore, vx≠

h-m≤ i < j ≤ h

m+1

Ai = Aj

Meaning: 

Repetition in the 

last m+1 variables

Ah=a

+
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Extending the parse tree…

z = uvkwxky

S  = A0

Ai=Aj

Ai

h ≥ m+1

u

w

yv x

Replacing 

Aj with Ai

(k times)

v x

Ai

==> For all k≥0: uvkwxky L

z = uwy

S  = A0

Aj

u

w

y

Or, replacing 

Ai with Aj
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Proof contd..

• Also, since Ai’s subtree no taller than m+1

==> the string generated under Ai‘s subtree, which is 

vwx, cannot be longer than 2m (=N)

But, 2m =N

==> |vwx| ≤ N 

This completes the proof for the pumping lemma.
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Application of Pumping 

Lemma for CFLs

Example 1: L = {ambmcm | m>0 }

Claim: L is not a CFL

Proof:
 Let N <== P/L constant

 Pick z = aNbNcN

 Apply pumping lemma to z and show that there 
exists at least one other string constructed from z 
(obtained by pumping up or down) that is  L
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Proof contd…

 z = uvwxy

 As z = aNbNcN and |vwx| ≤ N and vx≠

 ==> v, x cannot contain all three symbols 

(a,b,c)

 ==>  we can pump up or pump down to build 

another string which is  L



43

Example #2 for P/L application

 L = { ww | w is in {0,1}*}

 Show that L is not a CFL

 Try string z = 0N0N

 what happens?

 Try string z = 0N1N0N1N

 what happens?
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Example 3

 L = { 0k2
| k is any integer)

 Prove L is not a CFL using Pumping 

Lemma



Example 4

 L = {aibjck | i<j<k }

 Prove that L is not a CFL

45
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CFL Closure Properties
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Closure Property Results

 CFLs are closed under:
 Union

 Concatenation

 Kleene closure operator

 Substitution

 Homomorphism, inverse homomorphism

 reversal

 CFLs are not closed under:
 Intersection

 Difference

 Complementation

Note: Reg languages 

are closed

under 

these 

operators
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Strategy for Closure Property 

Proofs

 First prove “closure under substitution”

 Using the above result, prove other closure properties

 CFLs are closed under:
 Union

 Concatenation

 Kleene closure operator

 Substitution

 Homomorphism, inverse homomorphism

 Reversal 

Prove 

this first
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The Substitution operation

For each a  ∑, then let s(a) be a language

If w=a1a2…an  L, then: 
 s(w) = { x1x2 … }  s(L),   s.t., xi  s(ai)

Example:
 Let ∑={0,1}

 Let: s(0) = {anbn | n ≥1}, s(1) = {aa,bb}

 If w=01, s(w)=s(0).s(1)
 E.g., s(w) contains a1 b1 aa, a1 b1bb,

a2 b2 aa, a2 b2bb,
… and so on.

Note: s(L) can use 

a different alphabet
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CFLs are closed under 

Substitution

IF L is a CFL and a substititution defined 

on L, s(L), is s.t., s(a) is a CFL for every 

symbol a, THEN:

 s(L) is also a CFL

L

w1

w2

w3

w4

…

s(L)

s(L)

s(w1)

s(w2)

s(w3)

s(w4)
…

Note: each s(w) 

is itself a set of strings

What is s(L)?
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CFLs are closed under 

Substitution

 G=(V,T,P,S) : CFG for L

 Because every s(a) is a CFL, there is a CFG for each s(a)

 Let Ga = (Va,Ta,Pa,Sa) 

 Construct G’=(V’,T’,P’,S) for s(L)

 P’ consists of:
 The productions of P, but with every occurrence of terminal “a” in 

their bodies replaced by Sa. 

 All productions in any Pa, for any a  ∑

x1 x2 xn

…

S

Sa1
Sa2

San

Parse tree for G’:



Substitution of a CFL: 

example

 Let L = language of binary palindromes s.t., substitutions for 0 

and 1 are defined as follows:

 s(0) = {anbn | n ≥1}, s(1) = {xx,yy}

 Prove that s(L) is also a CFL.
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CFG for L:

S=> 0S0|1S1|

CFG for s(0):

S0=> aS0b | ab

CFG for s(1):

S1=> xx | yy

Therefore, CFG for s(L):

S=> S0SS0 | S1 S S1 |

S0=> aS0b | ab

S1=> xx | yy
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CFLs are closed under union

Let L1 and L2 be CFLs

To show: L2 U L2 is also a CFL

 Make a new language:
 Lnew = {a,b} s.t., s(a) = L1 and s(b) = L2

==> s(Lnew) == same as == L1 U L2

 A more direct, alternative proof
 Let S1 and S2 be the starting variables of the 

grammars for L1 and L2

 Then, Snew => S1 | S2

Let us show by using the result of Substitution
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CFLs are closed under 

concatenation

 Let L1 and L2 be CFLs

 Make Lnew= {ab} s.t., 
s(a) = L1 and s(b)= L2

==> L1 L2 = s(Lnew) 

 A proof without using substitution?

Let us show by using the result of Substitution
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CFLs are closed under 

Kleene Closure

 Let L be a CFL

 Let Lnew = {a}* and s(a) = L1

 Then, L* = s(Lnew)
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CFLs are closed under 

Reversal

 Let L be a CFL, with grammar 

G=(V,T,P,S)

 For LR, construct GR=(V,T,PR,S) s.t.,

 If A==>  is in P, then:

 A==> R is in PR

 (that is, reverse every production)

We won’t use substitution to prove this result
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CFLs are not closed under 

Intersection

 Existential proof:
 L1 = {0n1n2i | n≥1,i≥1}

 L2 = {0i1n2n | n≥1,i≥1}

 Both L1 and L2 are CFLs
 Grammars?

 But L1  L2 cannot be a CFL
 Why?

 We have an example, where intersection is 
not closed. 

 Therefore, CFLs are not closed under 
intersection

Some negative closure results
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CFLs are not closed under 

complementation

 Follows from the fact that CFLs are not 

closed under intersection

 L1  L2 = L1 U L2 

Some negative closure results

Logic: if CFLs were to be closed under complementation 

 the whole right hand side becomes a CFL (because 

CFL is closed for union)

 the left hand side (intersection) is also a CFL

 but we just showed CFLs are 

NOT closed under intersection!

 CFLs cannot be closed under complementation.
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CFLs are not closed under 

difference

 Follows from the fact that CFLs are not 
closed under complementation

 Because, if CFLs are closed under 
difference, then:

 L  = ∑* - L

 So L has to be a CFL too

 Contradiction

Some negative closure results



60

Decision Properties

 Emptiness test

 Generating test

 Reachability test

 Membership test

 PDA acceptance 



61

“Undecidable” problems for 

CFL

 Is a given CFG G ambiguous?

 Is a given CFL inherently ambiguous?

 Is the intersection of two CFLs empty?

 Are two CFLs the same?

 Is a given L(G) equal to ∑*?
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Summary

 Normal Forms
 Chomsky Normal Form

 Griebach Normal Form

 Useful in proroving P/L

 Pumping Lemma for CFLs
 Main difference: z=uviwxiy

 Closure properties
 Closed under: union, concatentation, reversal, Kleen  

closure, homomorphism, substitution

 Not closed under: intersection, complementation, 
difference
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Pushdown Automata (PDA)
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PDA - the automata for CFLs

 What is?

 FA to Reg Lang, PDA is to CFL

 PDA == [  -NFA + “a stack” ]

 Why a stack?

-NFA

A stack filled with “stack symbols”

Input

string

Accept/reject
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Pushdown Automata -

Definition

 A PDA P := ( Q,∑,, δ,q0,Z0,F ):

 Q: states of the -NFA

 ∑: input alphabet

  : stack symbols 

 δ: transition function

 q0: start state

 Z0: Initial stack top symbol

 F: Final/accepting states



δ : The Transition Function
δ(q,a,X) = {(p,Y), …} 

1. state transition from q to p

2. a is the next input symbol

3. X is the current stack top symbol

4. Y is the replacement for X;
it is in * (a string of stack 
symbols)

i. Set Y =  for: Pop(X) 

ii. If Y=X: stack top is 
unchanged

iii. If Y=Z1Z2…Zk: X is popped 
and is replaced by Y in 
reverse order (i.e., Z1 will be 
the new stack top)

4

old state Stack top input symb. new state(s) new Stack top(s)

δ : Q x ∑ x   => Q x 

q
a X

p

Y

Y = ? Action

i) Y= Pop(X)

ii) Y=X Pop(X)

Push(X)

iii) Y=Z1Z2..Zk Pop(X)

Push(Zk)

Push(Zk-1)

…

Push(Z2)

Push(Z1)
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Example

Let Lwwr = {wwR | w is in (0+1)*}

 CFG for Lwwr : S==> 0S0 | 1S1 | 

 PDA for Lwwr :

 P := ( Q,∑, , δ,q0,Z0,F ) 

= ( {q0, q1, q2},{0,1},{0,1,Z0},δ,q0,Z0,{q2})
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PDA for Lwwr

1. δ(q0,0, Z0)={(q0,0Z0)}

2. δ(q0,1, Z0)={(q0,1Z0)}

3. δ(q0,0, 0)={(q0,00)}

4. δ(q0,0, 1)={(q0,01)}

5. δ(q0,1, 0)={(q0,10)}

6. δ(q0,1, 1)={(q0,11)}

7. δ(q0, , 0)={(q1, 0)}

8. δ(q0, , 1)={(q1, 1)}

9. δ(q0, , Z0)={(q1, Z0)}

10. δ(q1,0, 0)={(q1, )}

11. δ(q1,1, 1)={(q1, )}

12. δ(q1, , Z0)={(q2, Z0)}

First symbol push on stack

Grow the stack by pushing 

new symbols on top of old

(w-part)

Switch to popping mode, nondeterministically

(boundary between w and wR)

Shrink the stack by popping matching 

symbols (wR-part)

Enter acceptance state

Z0

Initial state of the PDA:

q0Stack

top
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PDA as a state diagram

qi qj

a, X   /  Y 

Next 

input 

symbolCurrent

state

Current

stack

top

Stack

Top

Replacement

(w/ string Y)

Next

state

δ(qi,a, X)={(qj,Y)}
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PDA for Lwwr: Transition Diagram

q0 q1 q2

0, Z0/0Z0

1, Z0/1Z0

0, 0/00

0, 1/01

1, 0/10

1, 1/11

0, 0/ 

1, 1/ 

, Z0/Z0

, 0/0 

, 1/1 

, Z0/Z0

Grow stack

Switch to

popping mode

Pop stack for 

matching symbols

Go to acceptance

∑ = {0, 1}

= {Z0, 0, 1}

Q = {q0,q1,q2}

, Z0/Z0

This would be a non-deterministic PDA
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Example 2: language of 

balanced paranthesis

q0 q1 q2

(, Z0 / ( Z0

, Z0 / Z0

, Z0 / Z0

Grow stack

Switch to

popping mode

Pop stack for 

matching symbols

Go to acceptance (by final state)

when you see the stack bottom symbol

∑ = { (, ) }

= {Z0, ( }

Q = {q0,q1,q2}

(, ( / ( (

), ( /  

), ( / 

To allow adjacent

blocks of nested paranthesis

(, ( / ( ( 

(, Z0 / ( Z0

, Z0 / Z0
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Example 2: language of balanced 

paranthesis (another design)

∑ = { (, ) }

= {Z0, ( }

Q = {q0,q1}

q0

(,Z0 / ( Z0

(,( / ( (

), ( / 

start
q1

,Z0/ Z0

,Z0/ Z0
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PDA’s Instantaneous 

Description (ID)

A PDA has a configuration at any given instance: 
(q,w,y)

 q - current state

 w - remainder of the input (i.e., unconsumed part)

 y - current stack contents as a string from top to bottom 
of stack

If δ(q,a, X)={(p, A)} is a transition, then the following are also true:

 (q, a, X ) |--- (p,,A)

 (q, aw, XB ) |--- (p,w,AB)

|--- sign is called a “turnstile notation” and represents 
one move

|---* sign represents a sequence of moves
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How does the PDA for Lwwr

work on input “1111”?

(q0,1111,Z0)

(q0,111,1Z0)

(q0,11,11Z0)

(q0,1,111Z0)

(q0,,1111Z0)

(q1, ,1111Z0)
(q1, ,11Z0)

(q1,1,111Z0)

(q1,11,11Z0)

(q1,111,1Z0)

(q1,1111,Z0) Path dies…

Path dies…

(q1,1,1Z0)

(q1, ,Z0)

(q2, ,Z0)

Acceptance by 

final state:

= empty input

AND

final state

All moves made by the non-deterministic PDA

Path dies…Path dies…
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Acceptance by…

 PDAs that accept by final state:
 For a PDA P, the language accepted by P, 

denoted by L(P) by final state, is:
 {w | (q0,w,Z0) |---* (q,, A) }, s.t., q  F 

 PDAs that accept by empty stack:
 For a PDA P, the language accepted by P, 

denoted by N(P) by empty stack, is:
 {w | (q0,w,Z0) |---* (q, , ) }, for any q  Q. 

Checklist:

- input exhausted?

- in a final state?

Checklist:

- input exhausted?

- is the stack empty?

There are two types of PDAs that one can design: 

those that accept by final state or by empty stack

Q) Does a PDA that accepts by empty stack

need any final state specified in the design?



Example: L of balanced 

parenthesis
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q0

(,Z0 / ( Z0

(,( / ( (

), ( / 

start
q1

,Z0/ Z0

,Z0/ Z0

PDA that accepts by final state

q0

start

(,Z0 / ( Z0

(, ( / ( (

), ( / 

,Z0 / 

An equivalent PDA that 

accepts by empty stack

,Z0/ Z0

PF: PN:

How will these two PDAs work on the input: ( ( ( ) ) ( ) )  ( ) 
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PDAs accepting by final state and empty 

stack are equivalent

 PF <= PDA accepting by final state
 PF = (QF,∑, , δF,q0,Z0,F)

 PN <= PDA accepting by empty stack
 PN = (QN,∑, , δN,q0,Z0)

 Theorem:
 (PN==> PF) For every PN, there exists a PF s.t. L(PF)=L(PN)

 (PF==> PN) For every PF, there exists a PN s.t. L(PF)=L(PN)
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PN==> PF construction

 Whenever PN’s stack becomes empty, make PF go to 

a final state without consuming any addition symbol

 To detect empty stack in PN: PF pushes a new stack 

symbol X0 (not in  of PN) initially before simultating 

PN

q0 …
pfp0

, X0/Z0X0New 

start

, X0/ X0

, X0/ X0

, X0/ X0

, X0/  X0

PN

PF:

PF = (QN U {p0,pf}, ∑,  U {X0}, δF, p0, X0, {pf})

PN:

, X0 / X0

How to convert an empty stack PDA into a final state PDA?
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Example: Matching parenthesis “(” “)”

PN: ( {q0}, {(,)}, {Z0,Z1}, δN, q0, Z0 )

δN: δN(q0,(,Z0) = { (q0,Z1Z0) }

δN(q0,(,Z1) = { (q0, Z1Z1) }

δN(q0,),Z1) = { (q0, ) }

δN(q0, ,Z0) = { (q0, ) }

q0

start

(,Z0 /Z1Z0

(,Z1 /Z1Z1

),Z1 / 

,Z0 / 

q0

(,Z0/Z1Z0

(,Z1/Z1Z1

),Z1/ 

 ,Z0/ 

start

p0 pf

,X0/Z0X0
,X0/ X0 

Pf: ( {p0,q0 ,pf}, {(,)}, {X0,Z0,Z1}, δf, p0, X0 , pf)

δf: δf(p0, ,X0) = { (q0,Z0) }

δf(q0,(,Z0) = { (q0,Z1 Z0) }

δf(q0,(,Z1) = { (q0, Z1Z1) }

δf(q0,),Z1) = { (q0, ) }

δf(q0, ,Z0) = { (q0, ) }

δf(p0, ,X0) = { (pf, X0 ) }

Accept by empty stack Accept by final state
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PF==> PN construction

 Main idea:

 Whenever PF reaches a final state, just make an  -transition into a 

new end state, clear out the stack and accept

 Danger: What if PF design is such that it clears the stack midway 

without entering a final state?

 to address this, add a new start symbol X0 (not in  of PF)  

PN = (Q U {p0,pe}, ∑,  U {X0}, δN, p0, X0)

p0

, X0/Z0X0New 

start

, any/ 

, any/ 

, any/ 

q0 …
pe

, any/ 

PF

PN:

How to convert an final state PDA into an empty stack PDA?
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Equivalence of PDAs and 

CFGs
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CFGs == PDAs ==> CFLs

CFG

PDA by 

final state

PDA by

empty stack

?

≡
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Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given 

w, and upon consuming it fully it either arrives at acceptance (by 

empty stack) or non-acceptance.

This is same as: “implementing a CFG using a PDA”

PDA

(acceptance 

by empty 

stack)

CFG

w

accept

reject

implements

IN
P

U
T

O
U

T
P

U
T
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Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w, 

and upon consuming it fully it either arrives at acceptance (by 

empty stack) or non-acceptance.

Steps:

1. Push the right hand side of the production onto the stack, 

with leftmost symbol at the stack top

2. If stack top is the leftmost variable, then replace it by all its 

productions (each possible substitution will represent a 

distinct path taken by the non-deterministic PDA)

3. If stack top has a terminal symbol, and if it matches with the 

next symbol in the input string, then pop it 

State is inconsequential (only one state is needed)

This is same as: “implementing a CFG using a PDA”
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Formal construction of PDA 

from CFG

 Given: G= (V,T,P,S)

 Output: PN = ({q}, T, V U T, δ, q, S)

 δ:

 For all A  V , add the following 

transition(s) in the PDA:

 δ(q,  ,A) = { (q, ) | “A ==>”  P}

 For all a  T, add the following 

transition(s) in the PDA:

 δ(q,a,a)= { (q,  ) } 

A

Before:

…

a

Before:

…



After:

…

a

After:

…

Note: Initial stack symbol (S)

same as the start variable

in the grammar

pop

a…
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Example: CFG to PDA

 G = ( {S,A}, {0,1}, P, S)

 P: 
 S ==> AS | 

 A ==> 0A1 | A1 | 01

 PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)

 δ: 
 δ(q,  , S) = { (q, AS), (q,  )}

 δ(q,  , A) = { (q,0A1), (q,A1), (q,01) }

 δ(q, 0, 0) = { (q,  ) }

 δ(q, 1, 1) = { (q,  ) } How will this new PDA work?

Lets simulate string 0011

q

,S / S

1,1 / 

0,0 / 

,A / 01

,A / A1

,A / 0A1

,S / 

,S / AS



Simulating string 0011 on the 

new PDA …
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PDA (δ): 
δ(q,  , S) = { (q, AS), (q,  )}
δ(q,  , A) = { (q,0A1), (q,A1), (q,01) }
δ(q, 0, 0) = { (q,  ) }
δ(q, 1, 1) = { (q,  ) }

S

Stack moves (shows only the successful path):

S
A

S
1
A
0

S
1
A

0

S
1
1
0

S
1
1

0

S
1

1

S

1 

Accept by 

empty stack

q

,S / S

1,1 / 

0,0 / 

,A / 01

,A / A1

,A / 0A1

,S / 

,S / AS

S => AS

=> 0A1S

=> 0011S

=> 0011

Leftmost deriv.:

S          =>AS  =>0A1S     =>0011S                            => 0011
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Converting a PDA into a CFG

 Main idea: Reverse engineer the 
productions from transitions

If δ(q,a,Z) => (p, Y1Y2Y3…Yk):
1. State is changed from q to p;

2. Terminal a is consumed;

3. Stack top symbol Z is popped and replaced with a 
sequence of k variables. 

 Action: Create a grammar variable called 
“[qZp]” which includes the following 
production:

 [qZp] => a[pY1q1] [q1Y2q2] [q2Y3q3]… [qk-1Ykqk]

 Proof discussion (in the book)
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Example: Bracket matching

 To avoid confusion, we will use b=“(“ and  e=“)”

PN: ( {q0}, {b,e}, {Z0,Z1}, δ, q0, Z0 )

1. δ(q0,b,Z0) = { (q0,Z1Z0) }

2. δ(q0,b,Z1) = { (q0,Z1Z1) }

3. δ(q0,e,Z1) = { (q0,  ) }

4. δ(q0,  ,Z0) = { (q0,  ) }

0. S => [q0Z0q0]

1. [q0Z0q0] => b [q0Z1q0] [q0Z0q0]

2. [q0Z1q0] => b [q0Z1q0] [q0Z1q0]

3. [q0Z1q0] => e

4. [q0Z0q0] => 

Let A=[q0Z0q0]

Let B=[q0Z1q0]

0. S => A

1. A => b B A

2. B => b B B

3. B => e

4. A => 

Simplifying, 

0. S => b B S | 
1. B => b B B | e

If you were to directly write a CFG:

S => b S e S | 
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Two ways to build a CFG

Build a PDA Construct

CFG from PDA

Derive CFG directly

Derive a CFG Construct

PDA from CFG

Design a PDA directly

Similarly…

(indirect)

(direct)

(indirect)

(direct)

Two ways to build a PDA
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Deterministic PDAs
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This PDA for Lwwr is non-deterministic

q0 q1 q2

0, Z0/0Z0

1, Z0/1Z0

0, 0/00

0, 1/01

1, 0/10

1, 1/11
0, 0/ 

1, 1/ 

, Z0/Z0

, 0/0 

, 1/1 

, Z0/Z0

Grow stack

Switch to

popping mode

Pop stack for 

matching symbols

Accepts by final state

Why does it have 

to be non-

deterministic?

To remove 

guessing, 

impose the user 

to insert c in the 

middle
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D-PDA for Lwcwr = {wcwR | c is some 

special symbol not in w}

q0 q1 q2

0, Z0/0Z0

1, Z0/1Z0

0, 0/00

0, 1/01

1, 0/10

1, 1/11

0, 0/ 

1, 1/ 

c, Z0/Z0

c, 0/0 

c, 1/1 

, Z0/Z0

Grow stack

Switch to

popping mode

Pop stack for 

matching symbols

Accepts by

final state

Note:
• all transitions have 

become deterministic

Example shows that: Nondeterministic PDAs ≠ D-PDAs
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Deterministic PDA: Definition

 A PDA is deterministic if and only if:

1. δ(q,a,X) has at most one member for any 

a  ∑ U {}

 If δ(q,a,X) is non-empty for some a∑, 

then δ(q, ,X) must be empty.
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PDA vs DPDA vs Regular 

languages

Regular languages D-PDA

non-deterministic PDA

Lwwr
Lwcwr
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Summary

 PDAs for CFLs and CFGs
 Non-deterministic

 Deterministic

 PDA acceptance types
1. By final state

2. By empty stack 

 PDA
 IDs, Transition diagram

 Equivalence of CFG and PDA 
 CFG => PDA construction

 PDA => CFG construction
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Turing Machines
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Turing Machines are…

 Very powerful (abstract) machines that 
could simulate any modern day 
computer (although very, very slowly!)

 Why design such a machine?

 If a problem cannot be “solved” even using 
a TM, then it implies that the problem is 
undecidable

 Computability vs. Decidability

For every input, 

answer YES or NO
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A Turing Machine (TM)

 M = (Q, ∑, , , q0,B,F)

B B B X1 X2 X3 … Xi … Xn B B… …

Finite

control

Infinite tape with tape symbols

B: blank symbol (special symbol reserved to indicate data boundary)

Input & output tape symbols

Tape head

This is like 

the CPU & 

program 

counter

Tape is the 

memory
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Transition function 

 One move (denoted by |---) 
in a TM does the following:
 (q,X) = (p,Y,D)

 q is the current state

 X is the current tape symbol pointed by 
tape head

 State changes from q to p

 After the move:

 X is replaced with symbol Y

 If D=“L”, the tape head moves “left” by 
one position. 
Alternatively, if D=“R” the tape head 
moves “right” by one position.

q p
X / Y,D

You can also use:

 for R

 for L
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ID of a TM

 Instantaneous Description or ID :
 X1X2…Xi-1qXiXi+1…Xn

means: 
 q is the current state

 Tape head is pointing to Xi

 X1X2…Xi-1XiXi+1…Xn are the current tape symbols

 (q,Xi) = (p,Y,R)  is same as:
X1…Xi-1qXi…Xn |---- X1…Xi-1YpXi+1…Xn

 (q,Xi) = (p,Y,L)   is same as:
X1…Xi-1qXi…Xn |---- X1…pXi-1YXi+1…Xn
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Way to check for Membership

 Is a string w accepted by a TM?

 Initial condition:
 The (whole) input string w is present in TM, 

preceded and followed by infinite blank symbols

 Final acceptance:
 Accept w if TM enters final state and halts

 If TM halts and not final state, then reject
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Example: L = {0n1n | n≥1}

 Strategy: w = 000111

0 1 1 100 B BBB… …

0 1 1 10X B BBB… …

… 0 Y 1 10X B BBB …

0 Y 1 1XX B BBB… …

0 Y Y 1XX B BBB… …

X Y Y 1XX B BBB …

X Y Y YXX B BBB …

Accept

X Y Y YXX B BBB …

…

…

…

…

…
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TM for {0n1n | n≥1} 

q0 q1

0 / X,R

0 / 0,R

q2

1 / Y,L

Y / Y,L

0 / 0,L

X / X,R

q3

Y / Y,R

Y / Y,R

q4

B / B,R

1. Mark next unread 0 with X 
and move right

2. Move to the right all the way 
to the first unread 1, and mark 
it with Y

3. Move back (to the left) all the 
way to the last marked X, and 
then move one position to the 
right

4. If the next position is 0, then 
goto step 1.
Else move all the way to the 
right to ensure there are no 
excess 1s. If not move right to 
the next blank symbol and 
stop & accept.

Y / Y,R
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TM for {0n1n | n≥1} 

Next Tape Symbol

Curr. 

State

0 1 X Y B

q0 (q1,X,R) - - (q3,Y,R) -

q1 (q1,0,R) (q2,Y,L) - (q1,Y,R) -

q2 (q2,0,L) - (q0,X,R) (q2,Y,L) -

q3 - - - (q3,Y,R) (q4,B,R)

*q4 - -- - - -

Table representation of the state diagram

*state diagram representation preferred
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TMs for calculations

 TMs can also be used for calculating 

values

 Like arithmetic computations

 Eg., addition, subtraction, multiplication, 

etc.
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Example 2: monus subtraction

“m -- n” = max{m-n,0}

0m10n
 ...B 0m-n B.. (if m>n) 

...BB…B..  (otherwise)
1. For every 0 on the left (mark X),  mark off a 0 on the right 

(mark Y)

2. Repeat process, until one of the following happens:

1. // No more 0s remaining on the left of 1 
Answer is 0, so flip all excess 0s on the right of 1 to Bs 
(and the 1 itself) and halt 

2. //No more 0s remaining on the right of 1
Answer is m-n, so simply halt after making 1 to B    G

iv
e
 s

ta
te

 d
ia

g
ra

m
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Example 3: Multiplication

 0m10n1 (input), 0mn1 (output)

 Pseudocode:
1. Move tape head back & forth such that for every 

0 seen in 0m, write n 0s to the right of the last 
delimiting 1

2. Once written, that zero is changed to B to get 
marked as finished

3. After completing on all m 0s, make the 
remaining n 0s and 1s also as BsG

iv
e
 s

ta
te

 d
ia

g
ra

m



Calculations vs. Languages

13

A “calculation” is one 

that takes an input 

and outputs a value 

(or values)

A “language” is a set 

of strings that meet 

certain criteria

The “language” for a certain 

calculation is the set of strings of 

the form “<input, output>”, where 

the output corresponds to a valid 

calculated value for the input

“<0#0,0>”

“<0#1,1>”

…

“<2#4,6>”

…

E.g., The language Ladd for the addition operation

Membership question == verifying a solution

e.g., is “<15#12,27>” a member of Ladd ?  
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Language of the Turing 

Machines

 Recursive Enumerable (RE) language

Regular

(DFA)
Context-

free

(PDA) C
o
n
te

x
t

s
e
n
s
it
iv

e

R
e
c
u
rs

iv
e
ly

E
n
u
m

e
ra

b
le



Variations of Turing Machines

15
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TMs with storage

 E.g., TM for 01* + 10*

q

storage

Tape head

1 1 1 110 B BBB …

Transition function :

• ([q0,B],a) = ([q1,a], a, R)

• ([q1,a],a) = ([q1,a], a, R)

• ([q1,a],B) = ([q2,B], B, R)

[q,a]: where q is current state, 

a is the symbol in storage 

Are the standard TMs 

equivalent to TMs with storage?

Yes

Generic description

Will work for both a=0 and a=1

Current 

state

Current 

Storage 

symbol

Tape 

symbol

Next 

state
New 

Storage 

symbol
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Multi-track Turing Machines

 TM with multiple tracks, 

but just one unified tape head

control

… …

… …

… …

Track 1

Track 2

Track k

…

One tape head to read

k symbols from the k tracks

at one step.

…
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Multi-Track TMs

 TM with multiple “tracks” but just one 

head E.g., TM for {wcw | w {0,1}* }

but w/o modifying original input string

control

Tape head

0 c 0 110 0 BBB …… Track 1

X c Y YXX Y BBB …… Track 2

AFTER
control

Tape head

0 c 0 110 0 BBB …… Track 1

B B B BBB B BBB …… Track 2

BEFORE

Second track mainly used as a scratch space for marking
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Multi-tape Turing Machines

 TM with multiple tapes, each tape with a 

separate head

 Each head can move independently of the 

others
control

… …

… …

… …

Tape 1

Tape 2

Tape k
…

k separate heads
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Non-deterministic TMs

 A TM can have non-deterministic moves:
 (q,X) = { (q1,Y1,D1), (q2,Y2,D2), …  }

 Simulation using a multitape deterministic 
TM:

Control

ID1 ID2 ID3 ID4

* * * *

Scratch tape

Input tape

Marker tape

Non-deterministic TMs  Deterministic TMs
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Summary

 TMs == Recursively Enumerable languages

 TMs can be used as both:
 Language recognizers

 Calculators/computers

 Basic TM is equivalent to all the below:
1. TM + storage

2. Multi-track TM 

3. Multi-tape TM

4. Non-deterministic TM

 TMs are like universal computing machines 
with unbounded storage
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Undecidability
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Decidability vs. Undecidability

 There are two types of TMs (based on halting):
(Recursive) 

TMs that always halt, no matter accepting or non-
accepting  DECIDABLE PROBLEMS

(Recursively enumerable) 

TMs that are guaranteed to halt only on acceptance. If 
non-accepting, it may or may not halt (i.e., could loop 
forever).

 Undecidability:
 Undecidable problems are those that  are not

recursive
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Recursive, RE, Undecidable languages

Regular

(DFA)
Context-

free

(PDA) C
o
n
te

x
t

s
e
n
s
it
iv

e

R
e
c
u
rs

iv
e

R
e
c
u
rs

iv
e
ly

E
n
u
m

e
ra

b
le

 (
R

E
)

Non-RE Languages

(all other languages for which 

no TMs can be built)

LBA
TMs that always halt

TMs that may or 

may not halt

No TMs exist

“Undecidable” problems
“Decidable” problems
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Recursive Languages &

Recursively Enumerable (RE) 

languages

 Any TM for a Recursive language is going to 

look like this:

 Any TM for a Recursively Enumerable (RE) 

language is going to look like this:

M
w

“accept”

“reject”

M
w

“accept”
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Closure Properties of:

- the Recursive language 

class, and  

- the Recursively Enumerable 

language class
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Recursive Languages are closed 

under complementation

 If L is Recursive, L is also Recursive

M
w

“accept”

“reject” “reject”

“accept”

w

M
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Are Recursively Enumerable 

Languages closed under 

complementation? (NO)

 If L is RE, L need not be RE

M
w

“accept”

“reject”

“accept”

w

M

?

?



Recursive Langs are closed 

under Union

 Let Mu = TM for L1 U L2

 Mu construction:

1. Make 2-tapes and 

copy input w on both 

tapes

2. Simulate M1 on tape 1 

3. Simulate M2 on tape 2

4. If either M1 or M2

accepts, then Mu

accepts

5. Otherwise, Mu rejects.

8

w

M1

M2

accept

reject

accept

reject

OR

Mu



Recursive Langs are closed 

under Intersection

 Let Mn = TM for L1  L2

 Mn construction:

1. Make 2-tapes and 

copy input w on both 

tapes

2. Simulate M1 on tape 1 

3. Simulate M2 on tape 2

4. If M1 AND M2 accepts, 

then Mn accepts

5. Otherwise, Mn rejects.

9

w

M1

M2

accept

reject

accept

reject

Mn

ANDAND
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Other Closure Property 

Results

 Recursive languages are also closed under:

 Concatenation

 Kleene closure (star operator)

 Homomorphism, and inverse homomorphism

 RE languages are closed under:

 Union, intersection, concatenation, Kleene closure

 RE languages are not closed under:

 complementation
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“Languages” vs. “Problems”

A “language” is a set of strings

Any “problem” can be expressed as a set of all 
strings that are of the form:

 “<input, output>”

==> Every problem also corresponds to a 
language!!

Think of the language for a “problem”  == a verifier for the problem

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” }
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The Halting Problem

An example of a recursive 

enumerable problem that is 

also undecidable
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Regular

(DFA)
Context-

free

(PDA) C
o
n
te

x
t

s
e
n
s
it
iv

e

R
e
c
u
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e

R
e
c
u
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e
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E
n
u
m

e
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b
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 (
R

E
)

Non-RE Languages

The Halting Problem

x
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What is the Halting Problem?

Definition of the “halting problem”:

 Does a givenTuring Machine M halt on 

a given input w?

Machine

M

Input w
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The Universal Turing Machine

 Given: TM M & its input w

 Aim: Build another TM called “H”, that will output:

 “accept” if M accepts w, and 

 “reject” otherwise

 An algorithm for H:

 Simulate M on w

 H(<M,w>)  =     

accept,    if M accepts w

reject, if M does does not accept w

A Turing Machine simulator

Question: If M does not halt on w, what will happen to H?

Implies: H is in RE
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A Claim

 Claim: No H that is always guaranteed 

to halt, can exist!

 Proof: (Alan Turing, 1936)

 By contradiction, let us assume H exists

H
<M,w> 

“accept”

“reject”
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HP Proof (step 1)

 Let us construct a new TM D using H as a 

subroutine:

 On input <M>:

1. Run H on input <M, <M> >;   //(i.e., run M on M itself)

2. Output the opposite of what H outputs;

H
<M>

“accept”

“reject” “reject”

“accept”

D

<M, “<M>” >

Therefore, if H exists  D also should exist. 

But can such a D exist? (if not, then H also cannot exist)
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HP Proof (step 2)

 The notion of inputing “<M>” to M itself

 A program can be input to itself (e.g., a compiler is a 

program that takes any program as input)

accept,    if M does not accept <M>

reject, if M accepts <M>

D (<M>) =

accept,    if D does not accept <D>

reject, if D accepts <D>

D (<D>) =

Now, what happens if D is input to itself?

A contradiction!!! ==>  Neither D nor H can exist.
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Of Paradoxes & Strange 

Loops

A fun book for further reading:

“Godel, Escher, Bach: An Eternal Golden Braid” 

by Douglas Hofstadter (Pulitzer winner, 1980)

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox)

MC Escher’s paintings
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The Diagonalization Language

Example of a language that is 

not recursive enumerable

(i.e, no TMs exist)
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Regular

(DFA)
Context-

free

(PDA) C
o
n
te

x
t

s
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R
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Non-RE Languages

The Halting Problem

The Diagonalization language

x

x
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A Language about TMs & 

acceptance

 Let L be the language of all strings 

<M,w> s.t.:

1. M is a TM (coded in binary) with input 

alphabet also binary

2. w is a binary string

3. M accepts input w. 
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Enumerating all binary strings

 Let w be a binary string

 Then 1w  i, where i is some integer
 E.g.,  If w=, then i=1;

 If w=0, then i=2; 

 If w=1, then i=3; so on…

 If 1w i, then call w as the ith word or ith binary 
string, denoted by wi.

 ==> A canonical ordering of all binary 
strings:
 {, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..}

 {w1, w2, w3, w4, …. wi, … }
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Any TM M can also be binary-

coded

 M = { Q, {0,1}, , , q0,B,F }

 Map all states, tape symbols and transitions to 
integers (==>binary strings)

 (qi,Xj) = (qk,Xl,Dm) will be represented as:
 ==> 0i1 0j1 0k1 0l1 0m

 Result: Each TM can be written down as a 
long binary string

 ==> Canonical ordering of TMs:
 {M1, M2, M3, M4, …. Mi, … }
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The Diagonalization Language

 Ld = { wi | wi  L(Mi) }
 The language of all strings whose corresponding 

machine does not accept itself (i.e., its own code)

1 2 3 4 …

1 0 1 0 1 …

2 1 1 0 0 …

3 0 1 0 1 …

4 1 0 0 1 …

i

j

… . .
.

diagonal

• Table: T[i,j] = 1, if Mi accepts wj

= 0, otherwise.

(input word w)

(TMs)

• Make a new language called

Ld = {wi | T[i,i] = 0}
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Ld is not RE (i.e., has no TM)

 Proof (by contradiction):

 Let M be the TM for Ld

 ==> M has to be equal to some Mk s.t. 

L(Mk) = Ld

 ==> Will wk belong to L(Mk) or not?

1. If wk  L(Mk) ==> T[k,k]=1 ==> wk Ld

2. If wk  L(Mk) ==> T[k,k]=0 ==> wk  Ld

 A contradiction either way!!
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Why should there be 

languages that do not have 

TMs?

We thought TMs can solve 

everything!!
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Non-RE languages

Regular

(DFA)
Context-

free

(PDA) C
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Non-RE Languages

How come there are languages here?

(e.g., diagonalization language)
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One Explanation 

There are more languages than TMs

 By pigeon hole principle:

 ==> some languages cannot have TMs

 But how do we show this?

 Need a way to “count & compare” two infinite 
sets (languages and TMs)
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How to count elements in a 

set?

Let A be a set:

 If A is finite  ==> counting is trivial

 If A is infinite ==> how do we count?

 And, how do we compare two infinite sets by 

their size?
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Cantor’s definition of set “size” 

for infinite sets (1873 A.D.)

Let N = {1,2,3,…} (all natural numbers)

Let E = {2,4,6,…} (all even numbers) 

Q) Which is bigger?

 A)  Both sets are of the same size

 “Countably infinite”

 Proof: Show by one-to-one, onto set correspondence from 

N ==> E n

1

2

3

.

.

.

f(n)

2

4

6

.

.

.

i.e, for every element in N, 

there is a unique element in E,

and vice versa.
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Example #2

 Let Q be the set of all rational numbers

 Q = { m/n  |    for all m,n  N }

 Claim: Q is also countably infinite; => |Q|=|N|

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 ….

….

….

….

….
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Uncountable sets

Example: 

 Let R be the set of all real numbers

 Claim: R is uncountable

n

1

2

3

4

.

.

.

f(n)

3 . 1 4 1 5 9 …

5 . 5 5 5 5 5 …

0 . 1 2 3 4 5 …

0 . 5 1 4 3 0 … E.g. x = 0 . 2 6 4 4 …

Build x s.t. x cannot possibly 

occur in the table

Really, really big sets!

(even bigger than countably infinite sets)
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Therefore, some languages 

cannot have TMs…

 The set of all TMs is countably infinite

 The set of all Languages is uncountable

 ==> There should be some languages 

without TMs ( by PHP)
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Summary

 Problems vs. languages

 Decidability
 Recursive

 Undecidability
 Recursively Enumerable

 Not RE

 Examples of languages 

 The diagonalization technique

 Reducability
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Final  Review



2

Objectives

 Introduce concepts in automata theory and 
theory of computation

 Identify different formal language classes and 
their relationships

 Design grammars and recognizers for 
different formal languages

 Prove or disprove theorems in automata 
theory using its properties

 Determine the decidability and intractability of 
computational problems 
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Main Topics

Part 1) Regular Languages

Part 2) Context-Free Languages

Part 3) Turing Machines & 

Computability
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The Chomsky hierarchy for formal 

languages
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Machines are what we allow them to be!!
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Interplay between different 

computing components

Machines

(hardware, software)

LanguagesProblems

Expressions, 

Grammars
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Automata Theory & Modern-

day Applications

Automata

Theory & 

Formal 

Languages

Compiler

Design & 

Programming 

Languages 

Computer

Organization &

Architecture )

Computation models

serial vs.  parallel 

• DNA computing, Quantum computing

Artificial 

&Intelligence 

Information

Theory

Algorithm

Design &

NP-Hardness

Scientific

Computing

• biological systems

• speech recognition

• modeling
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Regular Languages Topics

 Simplest of all language classes

 Finite Automata

 NFA, DFA, -NFA

 Regular expressions

 Regular languages & properties

 Closure

 Minimization 
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Finite Automata

 Deterministic Finite Automata (DFA)
 The machine can exist in only one state at any given time

 Non-deterministic Finite Automata (NFA)
 The machine can exist in multiple states at the same time

 -NFA is an NFA that allows -transitions

 What are their differences?

 Conversion methods
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Deterministic Finite Automata

 A DFA is defined by the 5-tuple: 
 {Q, ∑ , q0,F, δ }

 Two ways to represent:
 State-diagram

 State-transition table

 DFA construction checklist: 
 States & their meanings 

 Capture all possible combinations/input scenarios 
 break into cases & subcases wherever possible)

 Are outgoing transitions defined for every symbol from every state?

 Are final/accepting states marked?

 Possibly, dead-states will have to be included
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Non-deterministic Finite 

Automata

 A NFA is defined by the 5-tuple: 
 {Q, ∑ , q0,F, δ }

 Two ways to represent:
 State-diagram

 State-transition table

 NFA construction checklist: 
 Introduce states only as needed 

 Capture only valid combinations 
 Ignore invalid input symbol transitions (allow that path to die)

 Outgoing transitions defined only for valid symbols from every state

 Are final/accepting states marked?
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NFA to DFA conversion

 Checklist for NFA to DFA conversion

 Two approaches:

 Enumerate all possible subsets, or

 Use lazy construction strategy (to save time)

 Introduce subset states only as needed

 Any subset containing an accepting state is also accepting in 

the DFA

 Have you made a special entry for Φ, the empty subset?

 This will correspond to dead state
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-NFA to DFA conversion

 Checklist for €-NFA to DFA conversion
 First take ECLOSE(start state)

 New start state = ECLOSE(start state)

 Remember: ECLOSE(q) include q

 Same two approaches as NFA to DFA:
 Enumerate all possible subsets, or

 Use lazy construction strategy (to save time)
 Introduce subset states only as needed

 Only difference: take ECLOSE both before & after transitions

 The subset Φ corresponds to a “dead state”
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Regular Expressions 

 A way to express accepting patterns 

 Operators for Reg. Exp.

 (E), L(E+F), L(EF), L(E*)..

 Reg. Language  Reg. Exp. (checklist):

 Capture all cases of valid input strings

 Express each case by a reg. exp.

 Combine all of them using the + operator

 Pay attention to operator precedence
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Regular Expressions…

 DFA to Regular expression
 Enumerate all paths from start to every final state

 Generate regular expression for each segment, and 
concatenate

 Combine the reg. exp. for all each path using the + operator

 Reg. Expression to -NFA conversion
 Inside-to-outside construction

 Start making states for every atomic unit of RE

 Combine using: concatenation, + and * operators as 
appropriate

 For connecting adjacent parts, use -jumps

 Remember to note down final states
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Regular Expressions…

 Algebraic laws

 Commutative

 Associative 

 Distributive 

 Identity

 Annihiliator

 Idempotent

 Involving Kleene closures (* operator)
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English description of lang.

 For finite automata

 For Regular expressions

 When asked for “English language 
descriptions”:
 Always give the description of the underlying 

language that is accepted by that machine or 
expression

(and not of the machine or expression)
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Pumping Lemma

 Purpose: Regular or not? Verification technique

 Steps/Checklist for Pumping Lemma:

 Let n  pumping lemma constant

 Then construct input w which has n or more characters

 Now w=xyz should satisfy P/L

 Check all three conditions

 Then use one of these 2 strategies to arrive at contradiction for 
some other string constructed from w:

 Pump up (k >= 2)

 Pump down (k=0)
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Reg. Lang. Properties

 Closed under:

 Union

 Intersection

 Complementation

 Set difference

 Reversal

 Homomorphism & inverse homomorphism

 Look at all DFA/NFA constructions for the above
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Other Reg. Lang. Properties

 Membership question

 Emptiness test

 Reachability test

 Finiteness test

 Remove states that are:
 Unreachable, or cannot lead to accepting

 Check for cycle in left-over graph

 Or the reg. expression approach
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DFA minimization
 Steps:

 Remove unreachable states first

 Detect equivalent states

 Table-filing algorithm (checklist):
 First, mark X for accept vs. non-accepting 

 Pass 1:
 Then mark X where you can distinguish by just using one symbol transition

 Also mark = whenever states are equivalent.

 Pass 2:
 Distinguish using already distinguished states (one symbol)

 Pass 3:
 Repeat for 2 symbols (on the state pairs left undistinguished)

 …

 Terminate when all entries have been filled

 Finally modify the state diagram by keeping one representative state for 
every equivalent class
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Other properties

 Are 2 DFAs equivalent?

 Application of table filling algo
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CFL Topics

 CFGs

 PDAs

 CFLs & pumping lemma

 CFG simplification & normal forms

 CFL properties
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CFGs

 G=(V,T,P,S)

 Derivation, recursive inference, parse trees

 Their equivalence

 Leftmost & rightmost derivation

 Their equivalence

 Generate from parse tree

 Regular languages vs. CFLs

 Right-linear grammars
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CFGs

 Designing CFGs
 Techniques that can help:

 Making your own start symbol for combining grammars

 Eg., S => S1 | S2 (or) S => S1 S2

 Matching symbols:  (e.g., S => a S a | … )

 Replicating structures side by side: (e.g., S => a S b S  )

 Use variables for specific purposes (e.g., specific sub-cases)

 To go to an acceptance from a variable 

 ==> end the recursive substitution by making it generate terminals 
directly

 A => w 

 Conversely, to not go to acceptance from a variable, have 
productions that lead to other variables

 Proof of correctness
 Use induction on the string length



25

CFGs…

 Ambiguity of CFGs
 One string <==> more than one parse tree

 Finding one example is sufficient

 Converting ambiguous CFGs to non-
ambiguous CFGs
 Not always possible

 If possible, uses ambiguity resolving techniques 
(e.g., precedence)

 Ambiguity of CFL
 It is not possible to build even a single 

unambiguous CFG
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PDAs

 PDA ==> -NFA + “a stack”

 P = ( Q,∑,, δ,q0,Z0,F )

 δ(q,a,X) = {(p,Y), …}

 ID : (q, aw, XB ) |--- (p,w,AB)

 State diagram way to show the design of PDAs

qi qj

a, X / Y 

Next 

input 

symbolCurrent

state

Current

Stack

top

Stack

Top

Replacement

(w/ string Y)

Next

state

There can be only 1 stack top symbol

There can be many symbols for the replacement
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Designing PDAs

 Techniques that can help:
 Two types of PDAs

 Acceptance by empty stack

 If no more input and stack becomes empty

 Acceptance by final state

 If no more input and end in final state

 Convert one form to another

 Assign state for specific purposes

 Pushing & popping stack symbols for matching

 Convert CFG to PDA

 Introducing new stack symbols may help

 Take advantage of non-determinism



28

CFG Simplification

1. Eliminate -productions: A => 
 ==>  substitute for A (with & without)

 Find nullable symbols first and substitute next 

2. Eliminate unit productions: A=> B
 ==> substitute for B directly in A

 Find unit pairs and then go production by 
production

3. Eliminate useless symbols
 Retain only reachable and generating symbols

 Order is important :  steps (1) => (2) => (3)
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Chomsky Normal Form

 All productions of the form:
 A => BC    or     A=> a

 Grammar does not contain:
 Useless symbols, unit and €-productions

 Converting CFG (without S=>* ) into CNF
 Introduce new variables that collectively represent 

a sequence of other variables & terminals

 New variables for each terminal

 CNF ==> Parse tree size
 If the length of the longest path in the parse tree is n, 

then |w| ≤ 2n-1.
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Pumping Lemma for CFLs

 Then there exists a constant N, s.t., 

 if z is any string in L s.t. |z|≥N, then we can 

write z=uvwxy, subject to the following 

conditions:

1. |vwx| ≤ N

2. vx≠ 

3. For all k≥0, uvkwxky is in L
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Using Pumping Lemmas for 

CFLs

 Steps:
1. Let N be the P/L constant

2. Pick a word z in the language s.t. |z|≥N
 (choice critical - an arbitrary choice may not work)

3. z=uvwxy

4. First, argue that because of conditions (1) & (2), 
the portions covered by vwx on the main string z 
will have to satisfy some properties

5. Next, argue that by pumping up or down you will 
get a new string from z that is not in L   
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Closure Properties for CFL

 CFLs are closed under:
 Union

 Concatenation

 Kleene closure operator

 Substitution

 Homomorphism, inverse homomorphism

 CFLs are not closed under:
 Intersection

 Difference

 Complementation
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Closure Properties

 Watch out for 

 custom-defined operators

 Eg.. Prefix(L), or “L x M”

 Custom-defined symbols

 Other than the standard 0,1,a,b,c..

 E.g, #, c, ..
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The Basic Turing Machine 

(TM)

 M = (Q, ∑, , , q0,B,F)

B B B X1 X2 X3 … Xi … Xn B B… …

Finite

control

Infinite tape with tape symbols

B: end tape symbol (special)

Input & output tape symbols

Tape head
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Turing Machines & Variations

 Basic TM

 TM w/ storage

 Multi-track TM

 Multi-tape TM

 Non-deterministic TM
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TM design

 Use any variant feature that may simplify your design
 Storage - to remember last important symbol seen

 A new track - to mark (without disturbing the input)

 A new tape - to have flexibility in independent head motion 
in different directions

 Acceptance only by final state

 No need to show dead states 

 Use -transitions if needed

 Invent your own tape symbols as needed

Unless otherwise stated, it is OK to give TM design 

in the pseudocode format
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Recursive, RE, non-RE

 Recursive Language
 TMs that always halt

 Recursively Enumerable
 TMs that always halt only on acceptance

 Non-RE
 No TMs exist that are guaranteed to halt even on 

accept

 Need to know the conceptual differences 
among the above language classes
 Expect objective and/or true/false questions
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Recursive Closure Properties

 Closed under:

 Complementation, union, intersection, 

concatenation (discussed in class)

 Kleene Closure, Homomorphism (not 

discussed in class but think of extending)



Tips to show closure properties on 

Recursive & RE languages

Build a new machine that wraps 

around the TM for the input 

language(s)

 For Recursive languages:

 The old TM is always going 

to halt (w/ accept or reject) 

=> So will the new TM

 For Recursively 

Enumerable languages:
 The old TM is guaranteed to 

halt only on acceptance

=> So will the new TM

39

TM
accept

reject

w
fi fo

New TM accept

reject

You need to define the input and output

transformations (fi and fo)

w’

TM
accept

w
fi fo

New TM
accept

w’



MCQ s 

 

 

Theory of Computation   - I 

 

Q1. The regular expression (00+01+10+11)* corresponds to  the Language           [        ] 

    a) All Strings starts with 00 

    b) ALL strings ends with 11 

    c) Even length strings 

    d) None of the above 

 

 

Answer---- c 

 

It is not necessary to strings to start with 00 and end with 11, it generates even length 

strings 

 

 

Q2. The regular expression for the Following NFA with   ε      is                             [      ]    

     

                              a                 ε                         b 

 
a) a*    b) a*b      c) ab*    d) a*b* 

 

Answer ---d 

The set accepted by the machine is { ε, a, b, ab, bb, aab, aabb, abbb, aaaab,…} 

Hence a*b* is the regular expression 

 

 

 

Q3. Every regular language is a cfl       True/False                                [  ] 

  

 Answer----True 

Since regular grammar is a subset of Context free Grammar 

 



 

 

 

 

 

 

Q4. Which of the following grammar is not ambiguous                                           [        

] 

    a) S→S+S / S-S /a 

    b) S→iEtS / iEtSeS /a  ,  E→b 

    c) S→SbS/a 

    d) None of these 

 

Answer---d 

All the grammars in options (a),(b) &c generates more than one parse tree for some string 

,hence all the grammars given are ambiguous 

 

 

Q5. Which one of the following problem for L cfl and R regular is not decidable                                      

[       ] 

   a)    L=R 

   b)RC L 

   c) L=Ǿ 

   d) none of the above 

 

Answer---d 

All the given problems are decidable 

 

 

Q6. The following Language L={on1m\n>=0 and m>=0} can be designed by            [       ] 

 a) Finite Automata 

 b) Pushdown Automata 

 c) Turing Machine 

 d) All the above 

 

Answer---d 

Since the Language generated by the grammar is 0*1* , It can designed by finite 

automata, Hence it can be designed by PDA and TM 

 

Q7. In the Following figue q2 is  

 

                                      a                              b                                   a, b                    [        ] 



 
                                                          b 

  a)Final state 

  b)Start state 

  c)Trap state 

  d)None of the above 

 

Answer---c 

Trap state is a state from which we will be not coming back to final state for any input. In 

the above diagram q2 is trap state 

 

 

 

 

Q8. NFA and DFA differs in                                                                   [       ] 

  a) Start state                      b) Mapping function 

  c) Input alphabet               d) All the above 

 

Answer--b 

 

Start state and input alphabet are same when nfa is converted to dfa, only differs in 

mapping function 

 

Q9. In NFA we have Q states, then we have __________ states in DFA                     [      ] 

   a)2*Q     b)Q/2    c)2Q    d)Q2*2 

 

Answer ---c 

Converting nfa to dfa  

 

Q10. The regular expression for the following machine is                                           [      ] 

     a)ab             b)a+b     c)a       d)b 

 

                                            a,b 

 
 

q0 

q1 

q0 
q2 q1 



Answer---b 

 

 

 

Q11. In the following diagram ε-closure(q0) is                          [    ] 

      a){q1,q2,q3}        b)  {q1,q3} 

      c){q0,q1,q3]        d)  {q0,q1,q2,q3} 

 

  

 

 

  Answer ---d 

   

 

Q12.The following moore m/c gives how many time the substring _____ occurs in the 

long input string with input alphabet x,y                                               

 [    ] 

 

 

   a)xy            b)xxy          c)xyxy           d)xyy 

 

Answer ---b 

 

Q13. Consider the following languages  

    L1={on1m / n>=1 and m>=1} is a regular language 

    L2={O2n / n>=1 } is a regular language 

  Which of the following statement is correct                                  [     ] 

a) L1 is correct 

b) L2 is correct 

c) Both L1 and L2 are correct 

d) None of L1 and L2 are correct 

 

 Answer ---c 

L1 is equivalent to 0*1* , which is regular language 

L2 can be designed by Finite automata 

Hence L1 and L2 are regular languages 

 

Q14. The following language is regular   True/False                  

 [   ] 

       L={ap / p is prime] 

 

 Answer --- False 

By pumping lemma for regular set, we cannot select v for the uv iw , such that the string 

belongs to prime number of a’s 

 

Q15.The Following grammar generates the language                    [        ] 



 S→AXC / XBC / AYC /ABY 

 X→aXb / ab 

 Y→bYC / bc 

 A→aA /a 

            B->bB / b 

            C->cC /c 

 

a) { ai bj ck    /   i≠j or j=k} 

 

b) { ai bj ck    /   i=j or j=k} 

c) { ai bj ck    /   i=j or j≠k} 

d) { ai bj ck    /   i≠j or j≠k} 

 

Answer ---d 

 

X represents equal number of a’s &b’s 

Y represents equal number of b’s &c’s 

A represents one or more number of a’s 

B represents one or more number of b’s 

C represents one or more number of c’s 

 

Q16. The useless symbols in the following grammar are                [   ]     

     S→AB / a  

     A→a 

   a) A      b) B      c) A&B    d) None of these 

 

Answer --- c 

B is useless symbol as B is not generating any terminal 

Since S -> AB, A is also useless symbol 

 

Q17. Which of the following machine requires stack                      [      ] 

    a) Finite automata         b) PushDownAutomata 

    c) Turing machine         d) None of these 

 

Answer ---b 

Finite automata and Turing machine does not have stack 

PushDownAutomata requires stack 

 

 

 

Q18. In abstract Syntax Tree, the interior nodes corresponds to          

 [      ] 

     a) variables   b)Terminals    c)Any grammar symbol   d)  all of the above 

 

Answer---b 

In Abstract Syntax Tree all nodes corresponds to terminals. 



 

 

Q19. One of the following problem is not decidable  for cfl                                        [     ] 

      a) membership               b) ambiguity 

      c) When L is empty       d) Whether L is finite 

 

Answer --- b 

Ambiguity is undecidable for context free langauage 

 

 

Q20.Considet the following grammar                                                   [       ] 

   

E→E+T / T 

   T→T*F /F 

   F→ ( E ) / id 

  The above grammar has 

   a) Ambiguity   b) left recursion   c) both a &b     d) None 

 

Answer --- c 

Since the grammar is generating more than one parse for any string eg id+id*id 

Since the productions are of the form A->Aα/β eg E->E+T/T 

Hence grammar is ambiguous and left recursive 

 

 

 

Q21. Which of the following regular expressions are equivalent  

       I)  1*(1+ ε)        II) 1+             III) 1*                  IV) ε                                         [     ] 

     a)    I &II       b) I & III       c) I & IV   d) None 

 

Answer --- a 

Both represent the same set { ε, 1, 11, 111,…} 

 

 

Q22. The following regular grammar                                                                            [     ] 

 A→0A / 1B 

            B→ 0A /1B /0 

    Represents the languages ending with         

 a) 11               b)  00     c)  10    d) 01 

 

Answer ---c 

A->0A 

   ->01B 

   ->010A 

   ->0101B 

   ->01010 

Consider any derivation, string will end in 10 



Or 

Construct Finite Automata and check the inputs accepted by the machine 

 

Q23. The regular expression (P+Q)* is equivalent to    

 [         ] 

 a) (P* Q*)* 

 b) (P* + Q*)* 

 c) P* + 2*P*Q+Q* 

 d) Both a & b 

 

Answer – d 

By mathematical induction 

 

Q24. The regular expression equivalent to the following FA is    [         ] 

 

 

 a) 0* b) 1+    c) 0*1* d) 0*1* 

 

Answer ---c 

 

 

Q25. If G is a context-sensitive grammar, there is an algorithm to determine L (G) is 

infinite  True/False                [    ]  

 

Answer --- False 

Language generated by context sensitive grammar is finite or infinite is undecidable 

 

 

 

Q26. English description  of the language accepted by the automation depicted in the 

following diagram                                                                                     [     ] 

  

                                a                                        b                     b                  a                  

 
                                                  a                                a 

 

 

 a) all strings exactly one ‘a’ 

 b) if it has got more than one ‘a’ it should end with b 

 c) Both a & b 

q0 
q2 q1 



       d)None of  these 

 

Answer --- c 

The regular expression is a+a*b , hence  both a&b are true 

 

 

 

 

 

 

Q27. The regular expression for the strings with an odd number of 1’s  [      ] 

 

 a) 0*10* (10*10*)* 

 b) 0*1(10*10)*1 

 c) 0*11(101)* 

 d) (1+01)* (1+01) 

 

Answer ---a 

 In this regular expression 0*10* (10*10*)*  we have    (10*10*)*   which is having even  

number of 1’s ,and 0*10* (10*10*)*   makes odd number of 1’s   

 

 

 

 

 

 

 

 

Common Data Question 

Q28. Consider The following PDA M= ({q0, q1, q2}, {a, b}, {X}, S, zo, qo, q2}   

                                                        [    ]    

      δ (q0, a, z0) = (q0, Xz0) 

 δ (q0, a, X) = (q0, XX) 

 δ (q0, b, X) = (q1, X) 

 δ (q1, b, X) = (q1, X) 

 δ (q1, a, X) = (q2, ε) 

 δ (q2, a, X) = (q2, ε) 

 δ (q2, ε, z0) = (q2, ε) 

  

Q28. i) give the language accepting by empty       

        store {ambmcn / m, n, >, 1} 

a) {ambncn / m, n>, 1} 

b) {ambmcm / m, n>, 1} 

c) {ambncm / m, n, >, 1} 

 

 



Answer ---d 

Consider the input aaabbccc it will make the stack empty 

OR 

Design a PDA and check the input aaabbccc 

 

Q28.ii)give the instantenous description for the input aaabbccc 

 

 

 

 

Linked Question 

 

Q29.Given grammar G({S},{a,b},P,S)is S->aSa   

 

Q29  i) Add some productions to the grammar so that it generates even palindrome 

         

     Answer ----  S->bSb / ε 

 

 S->aSa->abSba->abab 

 

   Q29 ii)Add some productins to the grammar so that it generates odd palindrome 

     Answer ---- S->bSb / a /b 

 

 S->aSa->abSba->ababa 

 

 

 

 

 

 

Q30. Which one of the following regular expressions is NOT equivalent to the regular 

expression (a + b + c)* ?  

A) (a* + b* + c*)* 

B) (a*b*c*)* 

C) ((ab)* + c*)*  

D) (a*b* + c*)* 

 

Answer ---c 

 


