
Natural Language Processing
Unit-I
Dr A Nagesh

Unit-I

1.Finding the Structure of Words

This section deals with words, its structure and its models

1.1 Words and Their Components

1.1.1 Tokens

1.1.2 Lexemes

1.1.3 Morphemes

1.1.4 Typology

1.2 Issues and Challenges

1.2.1 Irregularity

1.2.2 Ambiguity

1.2.3 Productivity

1.3 Morphological Models

1.3.1 Dictionary Lookup

1.3.2 Finite-State Morphology

1.3.3 Unification-Based Morphology

1.3.4 Functional Morphology

1.3.5 Morphology Induction

2.Finding the Structure of Documents

This chapter mainly deals with Sentence and topic detection or segmentation.

2.1 Introduction

2.1.1 Sentence Boundary Detection

2.1.2 Topic Boundary Detection

2.2 Methods

This section deals with statistical classical approaches (Generative and Discriminative approaches)

2.2.1 Generative Sequence Classification Methods

2.2.2 Discriminative Local Classification Methods

2.3.3 Discriminative Sequence Classification Methods

2.2.4 Hybrid Approaches

2.2.5 Extensions for Global Modelling for Sentence

Segmentation

2.3 Complexity of the Approaches

2.4 Performance of the Approaches

NATURAL LANGUAGE PROCESSING(NLP)

UNIT - I

i.Finding the Structure of Words:

 Words and Their Components

 Issues and Challenges

 Morphological Models

ii.Finding the Structure of Documents:

 Introduction

 Methods

 Complexity of the Approaches

 Performances of the Approaches

Natural Language Processing

 Humans communicate through some form of language either by text or speech.

 To make interactions between computers and humans, computers need to understand natural languages used by

humans.

 Natural language processing is all about making computers learn, understand, analyse, manipulate and interpret

natural(human) languages.

 NLP stands for Natural Language Processing, which is a part of Computer Science, Human

language, and Artificial Intelligence.

 Processing of Natural Language is required when you want an intelligent system like robot to perform as per your

instructions, when you want to hear decision from a dialogue based clinical expert system, etc.

 The ability of machines to interpret human language is now at the core of many applications that we use every day

- chatbots, Email classification and spam filters, search engines, grammar checkers, voice assistants, and social

language translators.

 The input and output of an NLP system can be Speech or Written Text

Components of NLP

 There are two components of NLP, Natural Language Understanding (NLU)

and Natural Language Generation (NLG).

 Natural Language Understanding (NLU) which involves transforming human

language into a machine-readable format.

 It helps the machine to understand and analyse human language by extracting the

text from large data such as keywords, emotions, relations, and semantics.

 Natural Language Generation (NLG) acts as a translator that converts the

computerized data into natural language representation.

 It mainly involves Text planning, Sentence planning, and Text realization.

 The NLU is harder than NLG.

NLP Terminology

 Phonology − It is study of organizing sound systematically.

 Morphology: The study of the formation and internal structure of words.

 Morpheme − It is primitive unit of meaning in a language.

 Syntax: The study of the formation and internal structure of sentences.

 Semantics: The study of the meaning of sentences.

 Pragmatics − It deals with using and understanding sentences in different situations

and how the interpretation of the sentence is affected.

 Discourse − It deals with how the immediately preceding sentence can affect the

interpretation of the next sentence.

 World Knowledge − It includes the general knowledge about the world.

Steps in NLP

 There are general five steps :

1. Lexical Analysis

2. Syntactic Analysis (Parsing)

3. Semantic Analysis

4. Discourse Integration

5. Pragmatic Analysis

Lexical Analysis –

 The first phase of NLP is the Lexical Analysis.

 This phase scans the source code as a stream of characters and converts it into meaningful

lexemes.

 It divides the whole text into paragraphs, sentences, and words.

Syntactic Analysis (Parsing) –

 Syntactic Analysis is used to check grammar, word arrangements, and shows the relationship

among the words.

 The sentence such as “The school goes to boy” is rejected by English syntactic analyzer.

Semantic Analysis –

 Semantic analysis is concerned with the meaning representation.

 It mainly focuses on the literal meaning of words, phrases, and sentences.

 The semantic analyzer disregards sentence such as “hot ice-cream”.

Discourse Integration –

 Discourse Integration depends upon the sentences that proceeds it and also invokes the

meaning of the sentences that follow it.

Pragmatic Analysis –

 During this, what was said is re-interpreted on what it actually meant.

 It involves deriving those aspects of language which require real world knowledge.

 Example: "Open the door" is interpreted as a request instead of an order.

Finding the Structure of Words

 Human language is a complicated thing.

 We use it to express our thoughts, and through language, we receive information and infer its

meaning.

 Trying to understand language all together is not a viable approach.

 Linguists have developed whole disciplines that look at language from different perspectives

and at different levels of detail.

 The point of morphology, for instance, is to study the variable forms and functions of words,

 The syntax is concerned with the arrangement of words into phrases, clauses, and sentences.

 Word structure constraints due to pronunciation are described by phonology,

 The conventions for writing constitute the orthography of a language.

 The meaning of a linguistic expression is its semantics, and etymology and lexicology cover

especially the evolution of words and explain the semantic, morphological, and other links

among them.

 Words are perhaps the most intuitive units of language, yet they are in general tricky to define.

 Knowing how to work with them allows, in particular, the development of syntactic and

semantic abstractions and simplifies other advanced views on language.

 Here, first we explore how to identify words of distinct types in human languages, and how the

internal structure of words can be modelled in connection with the grammatical properties and

lexical concepts the words should represent.

 The discovery of word structure is morphological parsing.

 In many languages, words are delimited in the orthography by whitespace and

punctuation.

 But in many other languages, the writing system leaves it up to the reader to tell words

apart or determine their exact phonological forms.

Words and Their Components

 Words are defined in most languages as the smallest linguistic units that can form a
complete utterance by themselves.

 The minimal parts of words that deliver aspects of meaning to them are called
morphemes.

Tokens

 Suppose, for a moment, that words in English are delimited only by whitespace and

punctuation (the marks, such as full stop, comma, and brackets)

 Example: Will you read the newspaper? Will you read it? I won’t read it.

 If we confront our assumption with insights from syntax, we notice two here: words

newspaper and won’t.

 Being a compound word, newspaper has an interesting derivational structure.

 In writing, newspaper and the associated concept is distinguished from the

isolated news and paper.

 For reasons of generality, linguists prefer to analyze won’t as two syntactic words, or tokens,

each of which has its independent role and can be reverted to its normalized form.

 The structure of won’t could be parsed as will followed by not.

 In English, this kind of tokenization and normalization may apply to just a limited set of

cases, but in other languages, these phenomena have to be treated in a less trivial manner.

 In Arabic or Hebrew, certain tokens are concatenated in writing with the preceding or the

following ones, possibly changing their forms as well.

 The underlying lexical or syntactic units are thereby blurred into one compact string of letters

and no longer appear as distinct words.

 Tokens behaving in this way can be found in various languages and are often called clitics.

 In the writing systems of Chinese, Japanese, and Thai, whitespace is not used to separate

words.

Lexemes

 By the term word, we often denote not just the one linguistic form in the given
context but also the concept behind the form and the set of alternative forms that
can express it.

 Such sets are called lexemes or lexical items, and they constitute the lexicon of a
language.

 Lexemes can be divided by their behaviour into the lexical categories of verbs, nouns,
adjectives, conjunctions, particles, or other parts of speech.

 The citation form of a lexeme, by which it is commonly identified, is also called its
lemma.

 When we convert a word into its other forms, such as turning the singular mouse into
the plural mice or mouses, we say we inflect the lexeme.

 When we transform a lexeme into another one that is morphologically related,
regardless of its lexical category, we say we derive the lexeme: for instance, the
nouns receiver and reception are derived from the verb to receive.

 Example: Did you see him? I didn’t see him. I didn’t see anyone.

• Example presents the problem of tokenization of didn’t and the investigation of the

internal structure of anyone.

 In the paraphrase I saw no one, the lexeme to see would be inflected into the
form saw to reflect its grammatical function of expressing positive past tense.

 Likewise, him is the oblique case form of he or even of a more abstract lexeme
representing all personal pronouns.

 In the paraphrase, no one can be perceived as the minimal word synonymous
with nobody.

 The difficulty with the definition of what counts as a word need not pose a problem for
the syntactic description if we understand no one as two closely connected tokens
treated as one fixed element.

Morphemes

 Morphological theories differ on whether and how to associate the properties of word

forms with their structural components.

 These components are usually called segments or morphs.

 The morphs that by themselves represent some aspect of the meaning of a word are

called morphemes of some function.

• Human languages employ a variety of devices by which morphs and morphemes are

combined into word forms.

Morphology
 Morphology is the domain of linguistics that

analyses the internal structure of words.
 Morphological analysis – exploring the structure of words
 Words are built up of minimal meaningful elements called morphemes:

played = play-ed
cats = cat-s
unfriendly = un-friend-ly

 Two types of morphemes:
i Stems: play, cat, friend
ii Affixes: -ed, -s, un-, -ly

 Two main types of affixes:
i Prefixes precede the stem: un-

ii Suffixes follow the stem: -ed, -s, un-, -ly
 Stemming = find the stem by stripping off affixes

play = play
replayed = re-play-ed

computerized = comput-er-ize-d

Problems in morphological processing
 Inflectional morphology: inflected forms are constructed from base forms and inflectional

affixes.
 Inflection relates different forms of the same word

Lemma Singular Plural
cat cat cats
dog dog dogs
knife knife knives
sheep sheep sheep

mouse mouse mice
 Derivational morphology: words are constructed from roots (or stems) and derivational

affixes:
inter+national = international
international+ize = internationalize
internationalize+ation = internationalization

 The simplest morphological process concatenates morphs one by one, as in dis-
agree-ment-s, where agree is a free lexical morpheme and the other elements are
bound grammatical morphemes contributing some partial meaning to the whole word.

 in a more complex scheme, morphs can interact with each other, and their forms may
become subject to additional phonological and orthographic changes denoted as
morphophonemic.

 The alternative forms of a morpheme are termed allomorphs.

Typology

 Morphological typology divides languages into groups by characterizing the prevalent

morphological phenomena in those languages.

 It can consider various criteria, and during the history of linguistics, different classifications

have been proposed.

 Let us outline the typology that is based on quantitative relations between words, their

morphemes, and their features:

 Isolating, or analytic, languages include no or relatively few words that would comprise more

than one morpheme (typical members are Chinese, Vietnamese, and Thai; analytic tendencies

are also found in English).

 Synthetic languages can combine more morphemes in one word and are further

divided into agglutinative and fusional languages.

 Agglutinative languages have morphemes associated with only a single function at a

time (as in Korean, Japanese, Finnish, and Tamil, etc.)

 Fusional languages are defined by their feature-per-morpheme ratio higher than one

(as in Arabic, Czech, Latin, Sanskrit, German, etc.).

 In accordance with the notions about word formation processes mentioned earlier, we

can also find out using concatenative and nonlinear:

 Concatenative languages linking morphs and morphemes one after another.

 Nonlinear languages allowing structural components to merge nonsequentially to

apply tonal morphemes or change the consonantal or vocalic templates of words.

Morphological Typology
 Morphological typology is a way of classifying the languages of the world that groups

languages according to their common morphological structures.
 The field organizes languages on the basis of how those languages form words by

combining morphemes.
 The morphological typology classifies languages into two broad classes of synthetic languages

and analytical languages.
 The synthetic class is then further sub classified as either agglutinative languages or fusional

languages.
 Analytic languages contain very little inflection, instead relying on features like word order and

auxiliary words to convey meaning.
 Synthetic languages, ones that are not analytic, are divided into two

categories: agglutinative and fusional languages.
• Agglutinative languages rely primarily on discrete particles(prefixes, suffixes, and infixes) for

inflection, ex: inter+national = international, international+ize = internationalize.
• While fusional languages "fuse" inflectional categories together, often allowing one word

ending to contain several categories, such that the original root can be difficult to extract
(anybody, newspaper).

https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Word
https://en.wikipedia.org/wiki/Morpheme
https://en.wikipedia.org/wiki/Analytic_language
https://en.wikipedia.org/wiki/Inflection
https://en.wikipedia.org/wiki/Word_order
https://en.wikipedia.org/wiki/Synthetic_language
https://en.wikipedia.org/wiki/Agglutinative_language
https://en.wikipedia.org/wiki/Fusional_language
https://en.wikipedia.org/wiki/Prefix
https://en.wikipedia.org/wiki/Suffix
https://en.wikipedia.org/wiki/Infix

Issues and Challenges

 Irregularity: word forms are not described by a prototypical linguistic model.

 Ambiguity: word forms be understood in multiple ways out of the context of their

discourse.

 Productivity: is the inventory of words in a language finite, or is it unlimited?

 Morphological parsing tries to eliminate the variability of word forms to provide higher-

level linguistic units whose lexical and morphological properties are explicit and well

defined.

 It attempts to remove unnecessary irregularity and give limits to ambiguity, both of

which are present inherently in human language.

 By irregularity, we mean existence of such forms and structures that are not described

appropriately by a prototypical linguistic model.

 Some irregularities can be understood by redesigning the model and improving its

rules, but other lexically dependent irregularities often cannot be generalized

 Ambiguity is indeterminacy (not being interpreted) in interpretation of expressions of

language.

 Morphological modelling also faces the problem of productivity and creativity in language, by

which unconventional but perfectly meaningful new words or new senses are coined.

Irregularity

 Morphological parsing is motivated by the quest for generalization and abstraction in the

world of words.

 Immediate descriptions of given linguistic data may not be the ultimate ones, due to either

their inadequate accuracy or inappropriate complexity, and better formulations may be

needed.

 The design principles of the morphological model are therefore very important.

 In Arabic, the deeper study of the morphological processes that are in effect during inflection

and derivation, even for the so-called irregular words, is essential for mastering the whole

morphological and phonological system.

 With the proper abstractions made, irregular morphology can be seen as merely enforcing

some extended rules, the nature of which is phonological, over the underlying or prototypical

regular word forms.

Table: Discovering the regularity of Arabic morphology using morphophonemic

templates, where uniform structural operations apply to different kinds of stems.

In rows, surface forms S of qara_ ‘to read’ and ra_￣a ‘to see’ and their inflections are

analyzed into immediate I and morphophonemic M templates, in which dashes mark the

structural boundaries where merge rules are enforced.

The outer columns of the table correspond to P perfective and I imperfective stems

declared in the lexicon; the inner columns treat active verb forms of the following

morphosyntactic properties: I indicative, S subjunctive, J jussive mood; 1 first, 2 second,

3 third person; M masculine, F feminine gender; S singular, P plural number.

• Table illustrates differences between a naive model of word structure in Arabic and

the model proposed in Smrˇz and Smrˇz and Bielick´y where morphophonemic merge

rules and templates are involved.

 Morphophonemic templates capture morphological processes by just organizing stem

patterns and generic affixes without any context-dependent variation of the affixes or ad hoc

modification of the stems.

 The merge rules, indeed very neatly or effectively concise, then ensure that such structured

representations can be converted into exactly the surface forms, both orthographic and

phonological, used in the natural language.

 Applying the merge rules is independent of and irrespective of any grammatical parameters

or information other than that contained in a template.

 Most morphological irregularities are thus successfully removed.

Ambiguity

 Morphological ambiguity is the possibility that word forms be understood in multiple

ways out of the context of their discourse (communication in speech or writing).

 Words forms that look the same but have distinct functions or meaning are called

homonyms.

 Ambiguity is present in all aspects of morphological processing and language

processing at large.

 Table arranges homonyms on the basis of their behaviour with different endings.

Systematic homonyms arise as verbs combined with endings in Korean

 Arabic is a language of rich morphology, both derivational and inflectional.

 Because Arabic script usually does not encode short vowels and omits yet some other

diacritical marks that would record the phonological form exactly, the degree of its

morphological ambiguity is considerably increased.

 When inflected syntactic words are combined in an utterance, additional phonological and

orthographic changes can take place, as shown in Figure.

 In Sanskrit, one such euphony rule is known as external sandhi.

•cases are expressed by the same word form with ‘my study’ and ‘ my teachers’,
but the original case endings are distinct.

Productivity

 Is the inventory of words in a language finite, or is it unlimited?

 This question leads directly to discerning two fundamental approaches to language,

summarized in the distinction between langue and parole, or in the competence versus

performance duality by Noam Chomsky.

 In one view, language can be seen as simply a collection of utterances (parole) actually

pronounced or written (performance).

 This ideal data set can in practice be approximated by linguistic corpora, which are finite

collections of linguistic data that are studied with empirical(based on) methods and can be

used for comparison when linguistic models are developed.

 Yet, if we consider language as a system (langue), we discover in it structural devices

like recursion, iteration, or compounding(make up; constitute)that allow to produce

(competence) an infinite set of concrete linguistic utterances.

 This general potential holds for morphological processes as well and is called

morphological productivity.

 We denote the set of word forms found in a corpus of a language as its vocabulary.

 The members of this set are word types, whereas every original instance of a word form is a

word token.

 The distribution of words or other elements of language follows the “80/20 rule,” also known

as the law of the vital few.

 It says that most of the word tokens in a given corpus can be identified with just a couple of

word types in its vocabulary, and words from the rest of the vocabulary occur much less

commonly if not rarely in the corpus.

 Furthermore, new, unexpected words will always appear as the collection of linguistic data is

enlarged.

 In Czech, negation is a productive morphological operation. Verbs, nouns, adjectives, and

adverbs can be prefixed with ne- to define the complementary lexical concept.

Morphological Models

 There are many possible approaches to designing and implementing morphological models.

 Over time, computational linguistics has witnessed the development of a number of
formalisms and frameworks, in particular grammars of different kinds and expressive power,
with which to address whole classes of problems in processing natural as well as formal
languages.

 Let us now look at the most prominent types of computational approaches to morphology.
Dictionary Lookup

 Morphological parsing is a process by which word forms of a language are associated with
corresponding linguistic descriptions.

 Morphological systems that specify these associations by merely enumerating(is the act or

process of making or stating a list of things one after another) them case by case
do not offer any generalization means.

 Likewise for systems in which analyzing a word form is reduced to looking it up verbatim in
word lists, dictionaries, or databases, unless they are constructed by and kept in sync with
more sophisticated models of the language.

 In this context, a dictionary is understood as a data structure that directly enables

obtaining some precomputed results, in our case word analyses.

 The data structure can be optimized for efficient lookup, and the results can be

shared. Lookup operations are relatively simple and usually quick.

 Dictionaries can be implemented, for instance, as lists, binary search trees, tries, hash

tables, and so on.

 Because the set of associations between word forms and their desired descriptions is

declared by plain enumeration, the coverage of the model is finite and the generative

potential of the language is not exploited.

 Despite all that, an enumerative model is often sufficient for the given purpose, deals easily
with exceptions, and can implement even complex morphology.

 For instance, dictionary-based approaches to Korean depend on a large dictionary of all
possible combinations of allomorphs and morphological alternations.

 These approaches do not allow development of reusable morphological rules, though.

Finite-State Morphology

 By finite-state morphological models, we mean those in which the specifications written by

human programmers are directly compiled into finite-state transducers.

 The two most popular tools supporting this approach, XFST (Xerox Finite-State Tool) and

LexTools.

 Finite-state transducers are computational devices extending the power of finite-state

automata.

 They consist of a finite set of nodes connected by directed edges labeled with pairs of input

and output symbols.

 In such a network or graph, nodes are also called states, while edges are called arcs.

 Traversing the network from the set of initial states to the set of final states along the arcs is

equivalent to reading the sequences of encountered input symbols and writing the sequences

of corresponding output symbols.

 The set of possible sequences accepted by the transducer defines the input

language; the set of possible sequences emitted by the transducer defines the output

language.

Input Input Morphological parsed output

Cats cat +N +PL

Cat cat +N +SG

Cities city +N +PL

Geese goose +N +PL

Goose goose +N +SG) or (goose +V)

Gooses goose +V +3SG

mergin

g

merge +V +PRES-PART

Caught (caught +V +PAST-PART) or (catch +V +PAST)

 For example, a finite-state transducer could translate the infinite regular language consisting of the

words vnuk, pravnuk, prapravnuk, ... to the matching words in the infinite regular language defined

by grandson, great-grandson, great-great-grandson.

 In finite-state computational morphology, it is common to refer to the input word forms as surface strings and to

the output descriptions as lexical strings, if the transducer is used for morphological analysis, or vice versa, if it is

used for morphological generation.

 Relations on languages can also be viewed as functions. Let us have a relation R, and let us denote by [Σ] the set

of all sequences over some set of symbols Σ, so that the domain and the range of R are subsets of [Σ].

 We can then consider R as a function mapping an input string into a set of output strings, formally denoted by this

type signature, where [Σ] equals String:

 A theoretical limitation of finite-state models of morphology is the problem of capturing reduplication of words or

their elements (e.g., to express plurality) found in several human languages.

 Finite-state technology can be applied to the morphological modeling of isolating and agglutinative languages in a

quite straightforward manner. Korean finite-state models are discussed by Kim, Lee and Rim, and Han, to mention

a few.

•In English, a finite-state transducer could analyze the surface string children into the lexical

string child [+plural], for instance, or generate women from woman [+plural].

Unification-Based Morphology

 The concepts and methods of these formalisms are often closely connected to those

of logic programming.

 In finite-state morphological models, both surface and lexical forms are by themselves

unstructured strings of atomic symbols.

 In higher-level approaches, linguistic information is expressed by more appropriate

data structures that can include complex values or can be recursively nested if

needed.

 Morphological parsing P thus associates linear forms φ with alternatives of structured

content ψ, cf.

 Erjavec argues that for morphological modelling, word forms are best captured by

regular expressions, while the linguistic content is best described through typed

feature structures.

 Feature structures can be viewed as directed acyclic graphs.

 A node in a feature structure comprises a set of attributes whose values can be

feature structures again.

 Nodes are associated with types, and atomic values are attributeless nodes

distinguished by their type.

 Instead of unique instances of values everywhere, references can be used to establish

value instance identity.

 Feature structures are usually displayed as attribute-value matrices or as nested

symbolic expressions.

 Unification is the key operation by which feature structures can be merged into a more

informative feature structure.

 Unification of feature structures can also fail, which means that the information in them

is mutually incompatible.

 Morphological models of this kind are typically formulated as logic programs, and

unification is used to solve the system of constraints imposed by the model.

 Advantages of this approach include better abstraction possibilities for developing a

morphological grammar as well as elimination of redundant information from it.

 Unification-based models have been implemented for Russian, Czech, Slovene,

Persian, Hebrew, Arabic, and other languages.

Functional Morphology

 Functional morphology defines its models using principles of functional programming

and type theory.

 It treats morphological operations and processes as pure mathematical functions and

organizes the linguistic as well as abstract elements of a model into distinct types of

values and type classes.

 Though functional morphology is not limited to modelling particular types of

morphologies in human languages, it is especially useful for fusional morphologies.

 Linguistic notions like paradigms, rules and exceptions, grammatical categories and

parameters, lexemes, morphemes, and morphs can be represented intuitively(without

conscious reasoning; instinctively) and succinctly(in a brief and clearly expressed

manner) in this approach.

 Functional morphology implementations are intended to be reused as programming

libraries capable of handling the complete morphology of a language and to be

incorporated into various kinds of applications.

 Morphological parsing is just one usage of the system, the others being

morphological generation, lexicon browsing, and so on.

 we can describe inflection I, derivation D, and lookup L as functions of these generic

type

 Many functional morphology implementations are embedded in a general-purpose

programming language, which gives programmers more freedom with advanced

programming techniques and allows them to develop full-featured, real-world

applications for their models.

 The Zen toolkit for Sanskrit morphology is written in OCaml.

 It influenced the functional morphology framework in Haskell, with which

morphologies of Latin, Swedish, Spanish, Urdu, and other languages have been

implemented.

 In Haskell, in particular, developers can take advantage of its syntactic flexibility and

design their own notation for the functional constructs that model the given problem.

 The notation then constitutes a so-called domain-specific embedded language, which makes programming even

more fun.

 Even without the options provided by general-purpose programming languages, functional morphology models

achieve high levels of abstraction.

 Morphological grammars in Grammatical Framework can be extended with descriptions of the syntax and

semantics of a language.

 Grammatical Framework itself supports multilinguality, and models of more than a dozen languages are available in

it as open-source software.

2.Finding structure of Documents

2.1 Introduction

 In human language, words and sentences do not appear randomly but have structure.

 For example, combinations of words from sentences- meaningful grammatical units, such as

statements, requests, and commands.

 Automatic extraction of structure of documents helps subsequent NLP tasks: for example,

parsing, machine translation, and semantic role labelling use sentences as the basic

processing unit.

 Sentence boundary annotation(labelling) is also important for aiding human readability of

automatic speech recognition (ASR) systems.

 Task of deciding where sentences start and end given a sequence of characters(made of words

and typographical cues) sentences boundary detection.

 Topic segmentation as the task of determining when a topic starts and ends in a sequence of

sentences.

 The statistical classification approaches that try to find the presence of sentence and topic
boundaries given human-annotated training data, for segmentation.

 These methods base their predictions on features of the input: local characteristics that give
evidence toward the presence or absence of a sentence, such as a period(.), a question
mark(?), an exclamation mark(!), or another type of punctuation.

 Features are the core of classification approaches and require careful design and selection in
order to be successful and prevent overfitting and noise problem.

 Most statistical approaches described here are language independent, every language is a
challenging in itself.

 For example, for processing of Chinese documents, the processor may need to first segment
the character sequences into words, as the words usually are not separated by a space.

 Similarly, for morphological rich languages, the word structure may need to be analyzed to
extract additional features.

 Such processing is usually done in a pre-processing step, where a sequence of tokens is
determined.

 Tokens can be word or sub-word units, depending on the task and language.
 These algorithms are then applied on tokens.

2.1.1 Sentence Boundary Detection

 Sentence boundary detection (Sentence segmentation) deals with automatically segmenting
a sequence of word tokens into sentence units.

 In written text in English and some other languages, the beginning of a sentence is usually
marked with an uppercase letter, and the end of a sentence is explicitly marked with a
period(.), a question mark(?), an exclamation mark(!), or another type of punctuation.

 In addition to their role as sentence boundary markers, capitalized initial letters are used
distinguish proper nouns, periods are used in abbreviations, and numbers and punctuation
marks are used inside proper names.

 The period at the end of an abbreviation can mark a sentence boundary at the same time.
 Example: I spoke with Dr. Smith. and My house is on Mountain Dr.
 In the first sentence, the abbreviation Dr. does not end a sentence, and in the second it does.
 Especially quoted sentences are always problematic, as the speakers may have uttered

multiple sentences, and sentence boundaries inside the quotes are also marked with
punctuation marks.

 An automatic method that outputs word boundaries as ending sentences according to the
presence of such punctuation marks would result in cutting some sentences incorrectly.

 Ambiguous abbreviations and capitalizations are not only problem of sentence segmentation

in written text.

 Spontaneously written texts, such as short message service (SMS) texts or instant

messaging(IM) texts, tend to be nongrammatical and have poorly used or missing

punctuation, which makes sentence segmentation even more challenging.

 Similarly, if the text input to be segmented into sentences comes from an automatic system,

such as optical character recognition (OCR) or ASR, that aims to translate images of

handwritten, type written, or printed text or spoken utterances into machine editable text, the

finding of sentences boundaries must deal with the errors of those systems as well.

 On the other hand, for conversational speech or text or multiparty meetings with

ungrammatical sentences and disfluencies, in most cases it is not clear where the boundaries

are.

 Code switching -that is, the use of words, phrases, or sentences from multiple languages by

multilingual speakers- is another problem that can affect the characteristics of sentences.

 For example, when switching to a different language, the writer can either keep the

punctuation rules from the first language or resort to the code of the second language.

 Conventional rule-based sentence segmentation systems in well-formed texts rely on patterns

to identify potential ends of sentences and lists of abbreviations for disambiguating them.

 For example, if the word before the boundary is a known abbreviation, such as “Mr.” or “Gov.,”

the text is not segmented at that position even though some periods are exceptions.

 To improve on such a rule-based approach, sentence segmentation is stated as a classification

problem.

 Given the training data where all sentence boundaries are marked, we can train a classifier to

recognize them.

2.1.2 Topic Boundary Detection

 Segmentation(Discourse or text segmentation) is the task of automatically dividing a stream

of text or speech into topically homogenous blocks.

 This is, given a sequence of(written or spoken) words, the aim of topic segmentation is to

find the boundaries where topics change.

 Topic segmentation is an important task for various language understanding applications, such

as information extraction and retrieval and text summarization.

 For example, in information retrieval, if a long documents can be segmented into shorter,

topically coherent segments, then only the segment that is about the user’s query could be

retrieved.

 During the late1990s, the U.S defence advanced research project agency(DARPA) initiated the

topic detection and tracking program to further the state of the art in finding and following

new topic in a stream of broadcast news stories.

 One of the tasks in the TDT effort was segmenting a news stream into individual stories.

2.2 Methods

 Sentence segmentation and topic segmentation have been considered as a boundary

classification problem.

 Given a boundary candidate(between two word tokens for sentence segmentation and

between two sentences for topic segmentation), the goal is to predict whether or not the

candidate is an actual boundary (sentence or topic boundary).

 Formally, let xƐX be the vector of features (the observation) associated with a candidate and y

ƐY be the label predicted for that candidate.

 The label y can be b for boundary and ഥ𝒃 for nonboundary.

 Classification problem: given a set of training examples(x,y)train, find a function that will assign

the most accurate possible label y of unseen examples xunseen.

 Alternatively to the binary classification problem, it is possible to model boundary types using

finer-grained categories.

 For segmentation in text be framed as a three-class problem: sentence boundary ba, without

an abbreviation and abbreviation not as a boundary

 Similarly spoken language, a three way classification can be made between non-boundaries

statements bs, and question boundaries bq .

• For sentence or topic segmentation, the problem is defined as finding the most probable
sentence or topic boundaries.

• The natural unit of sentence segmentation is words and of topic segmentation is sentence, as
we can assume that topics typically do not change in the middle of a sentences.

.

 The words or sentences are then grouped into categories stretches belonging to one

sentences or topic- that is word or sentence boundaries are classified into sentences or topic

boundaries and -non-boundaries.

 The classification can be done at each potential boundary i (local modelling); then, the aim is

to estimate the most probable boundary type ෝyifor each candidate xi

Here, the ^ is used to denote estimated categories, and a variable without a ^ is used to show

possible categories.

 In this formulation, a category is assigned to each example in isolation; hence, decision is

made locally.

 However, the consecutive types can be related to each other. For example, in broadcast news
speech, two consecutive sentences boundaries that form a single word sentence are very
infrequent.

 In local modelling, features can be extracted from surrounding example context of the
candidate boundary to model such dependencies.

ො𝑦 = 𝑦𝑖 𝑖𝑛 𝑌
𝑎𝑟𝑔𝑚𝑎𝑥

𝑃 𝑦𝑖 𝑥𝑖

• It is also possible to see the candidate boundaries as a sequence and search for the sequence of boundary types
that have the maximum probability given the candidate examples,

 We categorize the methods into local and sequence classification.

 Another categorization of methods is done according to the type of the machine learning algorithm: generative versus

discriminative.

 Generative sequence models estimate the joint distribution of the observations P(X,Y) (words, punctuation) and the

labels(sentence boundary, topic boundary).

 Discriminative sequence models, however, focus on features that categorize the differences between the labelling of that

examples.

𝑌 = 𝑦
𝑎𝑟𝑔𝑚𝑎𝑥

𝑃 𝑌 𝑋

2.2.1 Generative Sequence Classification Methods

 Most commonly used generative sequence classification method for topic and

sentence is the hidden Markov model (HMM).

 The probability in equation 2.2 is rewritten as the following, using the Bayes rule:
𝑌 = 𝑦

𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝑌|𝑋) 2.1

𝑌 = 𝑦
𝑎𝑟𝑔𝑚𝑎𝑥

𝑃 𝑌 𝑋 = 𝑦
𝑎𝑟𝑔𝑚𝑎𝑥 Τ𝑃 𝑋 𝑌 𝑃(𝑌) 𝑃(𝑋) = 𝑦

𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝑋|𝑌 𝑃(𝑌) 2.2

Here 𝑌= Predicted class(boundary) label

Y = (y1,y2,….yk)= Set of class(boundary) labels

X = (x1,x2,….xn)= set of feature vectors

P(Y|X) = the probability of given the X (feature vectors), what is the probability of X

belongs to the class(boundary) label.

P(x) = Probability of word sequence

P(Y) = Probability of the class(boundary)

 P(X) in the denominator is dropped because it is fixed for different Y and hence does not

change the argument of max.

 P(X|Y) and P(Y) can be estimated as

2.2.2Discriminative Local Classification Methods
 Discriminative classifiers aim to model P(yi |xi) equation 2.1 directly.
 The most important distinction is that whereas class densities P(x|y) are model assumptions

in generative approaches, such as naïve Bayes, in discriminative methods, discriminant
functions of the feature space define the model.

 A number of discriminative classification approaches, such as support vector machines,
boosting, maximum entropy, and regression. Are based on very different machine learning
algorithms.

 While discriminative approaches have been shown to outperform generative methods in
many speech and language processing tasks.

 For sentence segmentation, supervised learning methods have primarily been applied to
newspaper articles.

 Stamatatos, Fakotakis and Kokkinakis used transformation based learning (TBL) to infer rules
for finding sentence boundaries.

 Many classifiers have been tried for the task: regression trees, neural networks, classification
trees, maximum entropy classifiers, support vector machines, and naïve Bayes classifiers.

 The most Text tiling method Hearst for topic segmentation uses a lexical cohesion metric in a
word vector space as an indicator of topic similarity.

 Figure depicts a typical graph of similarity with respect to consecutive segmentation units.

 The document is chopped when the similarity is below some threshold.
 Originally, two methods for computing the similarity scores were proposed: block

comparison and vocabulary introduction.

 The first, block comparison, compares adjacent blocks of text to see how similar they are

according to how many words the adjacent blocks have in common.

 Given two blocks, b1 and b2, each having k tokens (sentences or paragraphs), the similarity

(or topical cohesion) score is computed by the formula:

 Where wt,b is the weight assigned to term t in block b.

 The weights can be binary or may be computed using other information retrieval- metrics

such as term frequency.

 The second, the vocabulary introduction method, assigns a score to a token-sequence gap

on the basis of how many new words are seen in the interval in which it is the midpoint.

 Similar to the block comparison formulation, given two consecutive blocks b1 and b2, of

equal number of words w, the topical cohesion score is computed with the following formula:

 Where NumNewTerms(b) returns the number of terms in block b seen the first time in text.

2.2.3Discriminative Sequence Classification Methods

 In segmentation tasks, the sentence or topic decision for a given example(word, sentence,

paragraph) highly depends on the decision for the examples in its vicinity.

 Discriminative sequence classification methods are in general extensions of local

discriminative models with additional decoding stages that find the best assignment of labels

by looking at neighbouring decisions to label.

 Conditional random fields(CRFs) are extension of maximum entropy, SVM struct is an

extension of SVM, and maximum margin Markov networks(M3N) are extensions of HMM.

 CRFs are a class of log-linear models for labelling structures.

 Contrary to local classifiers that predict sentences or topic boundaries independently, CRFs
can oversee the whole sequence of boundary hypotheses to make their decisions.

Complexity of the Approaches
 The approaches described here have advantages and disadvantages.
 In a given context and under a set of observation features, one approach may be better than

other.
 These approaches can be rated in terms of complexity (time and memory) of their training

and prediction algorithms and in terms of their performance on real-world datasets.
 In terms of complexity, training of discriminative approaches is more complex than training

of generative ones because they require multiple passes over the training data to adjust for
feature weights.

 However, generative models such as HELMs can handle multiple orders of magnitude larger
training sets and benefits, for instance, from decades of news wire transcripts.

 On the other hand, they work with only a few features (only words for HELM) and do not
cope well with unseen events.

1.List and explain the challenges of morphological models. Mar 2021 [7]
2. Discuss the importance and goals of Natural Language Processing. Mar 2021 [8]
3.List the applications and challenges in NLP. Sep 2021 [7]
4.Explain any one Morphological model. Sep 2021 [8]
5.Discuss about challenging issues of Morphological model. Sep 2021 [7]
6.Differentiate between surface and deep structure in NLP with suitable examples. Sep 2021 [8]
7.Give some examples for early NLP systems. Sep 2021 [7]
8. Explain the performance of approaches in structure of documents? Sep 2021 [15]
9.With the help of a neat diagram, explain the representation of syntactic structure. Mar 2021 [8]
10.Elobarate the models for ambiguity resolution in Parsing. Mar 2021 [7]
11.Explain various types of parsers in NLP? Sep 2021 [8]
12.Discuss multilingual issues in detail. Sep 2021 [7]
13.Given the grammar S->AB|BB, A->CC|AB|a, B->BB|CA|b, C->BA|AA|b, word w=‘aabb’. Applay top down parsing test, word
can be generated or not. Sep 2021 [8]
14.Explain Tree Banks and its role in parsing. Sep 2021 [7]

List the applications in NLP.
Applications of NLP:

• Information retrieval & web search

• Grammar correction & Question answering

•Sentiment Analysis.

•Text Classification.

•Chatbots & Virtual Assistants.

•Text Extraction.

•Machine Translation.

•Text Summarization.

•Market Intelligence.

•Auto-Correct.
Discuss the importance and goals of Natural Language Processing.

Natural Language Processing
Unit-II

Syntax Analysis:

2.1Parsing Natural Language

2.2Treebanks: A Data-Driven Approach to Syntax,

2.3Representation of Syntactic Structure,

2.4Parsing Algorithms,

2.5Models for Ambiguity Resolution in Parsing, Multilingual Issues

 The parsing in NLP is the process of determining the syntactic structure of a text by analysing

its constituent words based on an underlying grammar.

Example Grammar:

• Then, the outcome of the parsing process would be a parse tree, where sentence is the root,
intermediate nodes such as noun_phrase, verb_phrase etc. have children - hence they are
called non-terminals and finally, the leaves of the tree ‘Tom’, ‘ate’, ‘an’, ‘apple’ are
called terminals.
Parse Tree:

 A treebank can be defined as a linguistically annotated corpus that includes some kind of

syntactic analysis over and above part-of-speech tagging.

 A sentence is parsed by relating each word to other words in the sentence which depend on it.

 The syntactic parsing of a sentence consists of finding the correct syntactic structure of that

sentence in the given formalism/grammar.

 Dependency grammar (DG) and phrase structure grammar(PSG) are two such formalisms.

 PSG breaks sentence into constituents (phrases), which are then broken into smaller

constituents.

 Describe phrase, clause structure Example: NP,PP,VP etc.,

 DG: syntactic structure consist of lexical items, linked by binary asymmetric relations called

dependencies.

 Interested in grammatical relations between individual words.

 Does propose a recursive structure rather a network of relations

 These relations can also have labels.

Constituency tree vs Dependency tree

 Dependency structures explicitly represent

- Head-dependent relations (directed arcs)

- Functional categories (arc labels)

- Possibly some structural categories (POS)

 Phrase structure explicitly represent

- Phrases (non-terminal nodes)

- Structural categories (non-terminal labels)

- Possible some functional categories (grammatical functions)

Defining candidate dependency trees for an input sentence

 Learning: scoring possible dependency graphs for a given sentence, usually by factoring the

graphs into their component arcs

 Parsing: searching for the highest scoring graph for a given sentence

Syntax

 In NLP, the syntactic analysis of natural language input can vary from being very low-level,

such as simply tagging each word in the sentence with a part of speech (POS), or very high

level, such as full parsing.

 In syntactic parsing, ambiguity is a particularly difficult problem because the most possible

analysis has to be chosen from an exponentially large number of alternative analyses.

 From tagging to full parsing, algorithms that can handle such ambiguity have to be carefully

chosen.

 Here we explores the syntactic analysis methods from tagging to full parsing and the use of

supervised machine learning to deal with ambiguity.

2.1Parsing Natural Language

 In a text-to-speech application, input sentences are to be converted to a spoken output that

should sound like it was spoken by a native speaker of the language.

 Example: He wanted to go a drive in the country.

 There is a natural pause between the words derive and In in sentence that reflects an

underlying hidden structure to the sentence.

 Parsing can provide a structural description that identifies such a break in the intonation.

 A simpler case: The cat who lives dangerously had nine lives.
 In this case, a text-to-speech system needs to know that the first instance of the word lives is

a verb and the second instance is a noun before it can begin to produce the natural
intonation for this sentence.

 This is an instance of the part-of-speech (POS) tagging problem where each word in the
sentence is assigned a most likely part of speech.

 Another motivation for parsing comes from the natural language task of summarization, in
which several documents about the same topic should be condensed down to a small digest
of information.

 Such a summary may be in response to a question that is answered in the set of documents.
 In this case, a useful subtask is to compress an individual sentence so that only the relevant

portions of a sentence is included in the summary.
 For example:

Beyond the basic level, the operations of the three products vary widely.
The operations of the products vary.

 The elegant way to approach this task is to first parse the sentence to find the various
constituents: where we recursively partition the words in the sentence into individual
phrases such as a verb phrase or a noun phrase.

 The output of the parser for the input sentence is shown in Fig.

 Another example is the paragraph parsing.

 In the sentence fragment, the capitalized phrase EUROPEAN COUNTRIES can be replaced with

other phrases without changing the essential meaning of the sentences.

 A few examples of replacement phrases are shown in the sentence fragments .

Open border imply increasing racial fragmentation in EUROPEAN COUNTRIES.

Open borders imply increasing racial fragmentation in the countries of Europe

Open borders imply increasing racial fragmentation in European states.

Open borders imply increasing racial fragmentation in Europe

Open borders imply increasing racial fragmentation in European nations

Open borders imply increasing racial fragmentation in European countries.

• In contemporary NLP, syntactic parsers are routinely used in many applications, including

but not limited to statistical machine translation, information extraction from text

collections, language summarizations, producing entity grinds for language generation,

error correction in text.

•

2.2Treebanks: A Data-Driven Approach to Syntax

 Parsing recovers information that is not explicit in the input sentence.

 This implies that a parser requires some knowledge(syntactic rules) in addition to the input

sentence about the kind of syntactic analysis that should be produced as output.

 One method to provide such knowledge to the parser is to write down a grammar of the

language – a set of rules of syntactic analysis as a CFGs.

 In natural language, it is far too complex to simply list all the syntactic rules in terms of a CFG.

 The second knowledge acquisition problem- not only do we need to know the syntactic rules

for a particular language, but we also need to know which analysis is the most

plausible(probably) for a given input sentence.

 The construction of treebank is a data driven approach to syntax analysis that allows us to

address both of these knowledge acquisition bottlenecks in one stroke.

 A treebank is simply a collection of sentences (also called a corpus of text), where each

sentence is provided a complete syntax analysis.

 The syntactic analysis for each sentence has been judged by a human expert as the most

possible analysis for that sentence.

 A lot of care is taken during the human annotation process to ensure that a consistent

treatment is provided across the treebank for related grammatical phenomena.

 There is no set of syntactic rules or linguistic grammar explicitly provided by a treebank, and

typically there is no list of syntactic constructions provided explicitly in a treebank.

 A detailed set of assumptions about the syntax is typically used as an annotation guideline

to help the human experts produce the single-most plausible syntactic analysis for each

sentence in the corpus.

 Treebanks provide a solution to the two kinds of knowledge acquisition bottlenecks.

 Treebanks solve the first knowledge acquisition problem of finding the grammar underlying

the syntax analysis because the syntactic analysis is directly given instead of a grammar.

 In fact, the parser does not necessarily need any explicit grammar rules as long as it can

faithfully produce a syntax analysis for an input sentence.

 Treebank solve the second knowledge acquisition problem as well.

 Because each sentence in a treebank has been given its most plausible(probable) syntactic

analysis, supervised machine learning methods can be used to learn a scoring function over

all possible syntax analyses.

 Two main approaches to syntax analysis are used to construct treebanks: dependency graph

and phrase structure trees.

 These two representations are very closely related to each other and under some

assumptions, one representation can be converted to another.

 Dependence analysis is typically favoured for languages such as Czech and Turkish, that have

free word order.

 Phrase structure analysis is often used to provide additional information about long-distance

dependencies and mostly languages like English and French.

• NLP: is the capability of the computer software to understand the natural language.

• There are variety of languages in the world.

• Each language has its own structure(SVO or SOV)->called grammar ->has certain

set of rules->determines: what is allowed, what is not allowed.

• English: S O V Other languages: S V O or O S V

I eat mango

• Grammar is defined as the rules for forming well-structured sentences.

• belongs to VN

• Different Types of Grammar in NLP

1.Context-Free Grammar (CFG) 2.Constituency Grammar (CG) or Phrase structure

grammar 3.Dependency Grammar (DG)

Context-Free Grammar (CFG)

• Mathematically, a grammar G can be written as a 4-tuple (N, T, S, P)

• N or VN = set of non-terminal symbols, or variables.

• T or ∑ = set of terminal symbols.

• S = Start symbol where S ∈ N

• P = Production rules for Terminals as well as Non-terminals.
• It has the form α → β, where α and β are strings on VN ∪ ∑ at least one symbol of α

• Example: Jogn hit the ball

S -> NP VP

VP -> V NP

V ->hit

NP-> DN

D->the

N->John|ball

2.3 Representation of Syntactic Structure

2.3.1 Syntax Analysis Using Dependency Graphs

 The main philosophy behind dependency graphs is to connect a word- the head of a phrase-

with the dependents in that phrase.

 The notation connects a head with its dependent using a directed (asymmetric) connections.

 Dependency graphs, just like phrase structures trees, is a representation that is consistent

with many different linguistic frameworks.

 The words in the input sentence are treated as the only vertices in the graph, which are linked

together by directed arcs representing syntactic dependencies.

 In dependency-based syntactic parsing, the task is to derive a syntactic structure for an input

sentence by identifying the syntactic head of the each word in the sentence.

 This defines a dependency graph, where the nodes are the words of the input sentence and

arcs are the binary relations from head to dependent.

 The dependency tree analyses, where each word depends on exactly one parent, either

another word or a dummy root symbol.

 By convention, in dependency tree 0 index is used to indicate the root symbol and the

directed arcs are drawn from the head word to the dependent word.

 In the Fig shows a dependency tree for Czech sentence taken from the Prague dependency

treebank.

 Each node in the graph is a word, its part of speech and the position of the word in the

sentence.

 For example [fakulte, N3,7] is the seventh word in the sentence with POS tag N3.

 The node [#, ZSB,0] is the root node of the dependency tree.

 There are many variations of dependency syntactic analysis, but the basic textual format for a

dependency tree can be written in the following form.

 Where each dependent word specifies the head Word in the sentence, and exactly one word

is dependent to the root of the sentence.

 An important notation in dependency analysis is the notation of projectivity, which is a

constraint imposed by the linear order of words on the dependencies between words.

 A projective dependency tree is one where if we put the words in a linear order based on the

sentence with the root symbol in the first position, the dependency arcs can be drawn above

the words without any crossing dependencies.

2.3.2 Syntax Analysis Using Phrase Structures Trees
 A Phrase Structure syntax analysis of a sentence derives from the traditional sentence

diagrams that partition a sentence into constituents, and larger constituents are formed by
meaning smaller ones.

 Phrase structure analysis also typically incorporate ideas from generative grammar(from
linguistics) to deal with displaced constituents or apparent long-distance relationships
between heads and constituents.

 A phrase structure tree can be viewed as implicitly having a predicate-argument structure
associated with it.

 Sentence includes a subject and a predicate. The subject is a noun phrase (NP) and the
predicate is a verb phrase.

 For example, the phrase structure analysis : Mr. Baker seems especially sensitive, taken from
the Penn Treebank.

 The subject of the sentence is marked with the SBJ marker and predicate of the sentence is
marked with the PRD marker.

 NNP: proper noun, singular VBZ: verb, third person singular present
ADJP: adjective phrase RB: adverb JJ:adjective

 The same sentence gets the following dependency tree analysis: some of the information
from the bracketing labels from the phrase structure analysis gets mapped onto the labelled
arcs of the dependency analysis.

 To explain some details of phrase structure analysis in treebank, which was a project that
annotated 40,000 sentences from the wall street journal with phrase structure tree,

 The SBARQ label marks what questions ie those that contain a gap and therefore require a
trace.

• Wh- moved noun phrases are labeled WHNP and put inside SBARQ. They bear an identity
index that matches the reference index on the *T* in the position of the gap.

• However questions that are missing both subject and auxiliary are label SQ
• NP-SBJ noun phrases cab be subjects.
• *T* traces for wh- movement and this empty trace has an index (here it is 1) and associated

with the WHNP constituent with the same index.
Parsing Algorithms

• Given an input sentence, a parser produces an output analysis of that sentence.
• Treebank parsers do not need to have an explicit grammar, but to discuss the parsing

algorithms simpler, we use CFG.
• The simple CFG G that can be used to derive string such as a and b or c from the start symbol

N.

• An important concept for parsing is a derivation.
• For the input string a and b or c, the following sequence of actions separated by symbol

represents a sequence of steps called derivation.

• In this derivation, each line is called a sentential form.
• In the above derivation, we restricted ourselves to only expanded on the rightmost

nonterminal in each sentential form.
• This method is called the rightmost derivation of the input using a CFG.
• This derivation sequence exactly corresponds to the construction of the following parse tree

from left to right, one symbol at a time.

• However, a unique derivation sequence is not guaranteed.
• There can be many different derivation.
• For example, one more rightmost derivation that results following parse tree.

Shift Reduce Parsing
• To build a parser, we need an algorithm that can perform the steps in the above rightmost

derivation for any grammar and for any input string.
• Every CFG turns out to have an automata that is equivalent to it, called pushdown automata

(just like regular expression can be converted to finite-state automata).
• An algorithm for parsing that is general for any given CFG and input string.
• The algorithm is called shift-reduce parsing which uses two data structures: a buffer for input

symbols and a stack for storing CFG symbols.

S.No Parse Tree Stack Input Action

1 a and b or c Init

2 a a and b or c Shift a

3 (N a) N and b or c Reduce N->a

4 (N a) and N and b or c Shift and

5 (N a) and b N and b or c Shift b

6 (N a) and (N b) N and N or c Reduce N->b

7 (N (N a) and (N b)) N or c Reduce N->N and N

8 (N (N a) and (N b)) or N or c Shift or

9 (N (N a) and (N b)) or c N or c Shift c

10 (N (N a) and (N b)) or (N c) N or N Reduce N->c

11 (N (N (N a) and (N b)) or (N c)) N Reduce N->N or N

12 N (N (N a) and (N b)) or (N c)) N Accept

13

Hypergraphs and Chart Parsing(CYK Parsing)
• CFG s in the worst case such a parser might have to resort to backtracking, which means re-parsing the input

which leads to a time that is exponential in the grammar size in the worst case.
• Variants of this algorithm(CYK) are often used in statistical parsers that attempt to search the space of

possible parse trees without the limitation of purely left to right parsing.
• One of the earliest recognition parsing algorithm is CYK (Cocke, Kasami and younger) parsing algorithm and It

works only with CNF(Chomsky normal form).

CYK example:

Models for Ambiguity Resolution in Parsing
• Here we discuss on modelling aspects of parsing: how to design features and ways to resolve

ambiguity in parsing.
Probabilistic context-free grammar

• Ex: John bought a shirt with pockets

• Here we want to provide a model that matches the intuition that the second tree above is
preferred over the first.

• The parses can be thought of as ambiguous (leftmost to rightmost) derivation of the following
CFG:

• We assign scores or probabilities to the rules in CGF in order to provide a score or probability
for each derivation.

• From these rule probabilities, the only deciding factor for choosing between the two
parses for John brought a shirt with pockets in the two rules NP->NP PP and VP-> VP PP.
The probability for NP -> NP PP is set higher in the preceding PCFG.

• The rule probabilities can be derived from a treebank, consider a treebank with three
tress t1, t2, t3

• if we assume that tree t1 occurred 10 times in the treebank, t2 occurred 20 times and t3
occurred 50 times, then the PCFG we obtain from this treebank is:

• For input a a a there are two parses using the above PCFG: the probability P1 =0.125 0.334
0.285 = 0.01189 p2=0.25 0.667 0.714 =0.119.

• The parse tree p2 is the most likely tree for that input.

Generative models
• To find the most plausible parse tree, the parser has to choose between the possible

derivations each of which can be represented as a sequence of decisions.
• Let each derivation D = d1,d2,…..,dn, which is the sequence of decisions used to build the

parse tree.
• Then for input sentence x, the output parse tree y is defined by the sequence of steps in the

derivation.
• The probability for each derivation:

• The conditioning context in the probability P(di|d1,……..,di-1) is called the history and
corresponds to a partially built parse tree (as defined by the derived sequence).

• We make a simplifying assumption that keeps the conditioning context to a finite set by
grouping the histories into equivalence classes using a function

Discriminative models for Parsing
• Colins created a simple notation and framework that describes various discriminative

approaches to learning for parsing.
• This framework is called global linear model.
• Let x be a set of inputs and y be a set of possible outputs that can be a sequence of POS tags

or a parse tree or a dependency analysis.
• Each xƐx and yƐy is mapped to a d-dimensional feature vector ø(x,y), with each dimension

being a real number.
• A weight parameter vector wƐRd assigns a weight to each feature in ø(x,y), representing the

importance of that feature.

• The value of ø(x,y).w is the score of (x,y) . The height the score, the more possible it is that y is
the output of x.

• The function GEN(x) generates the set of possible outputs y for a given x.
• Having ø(x,y).w and GEN(x) specified, we would like to choose the height scoring candidate
𝑦∗ from GEN(x) as the most possible output

where F(x) returns the highest scoring output 𝑦∗ from GEN(x)
• A conditional random field (CRF) defines the conditional probability as a linear score for each

candidate y and a global normalization term:

• A simple linear model that ignores the normalization term is:

• There are two general approaches to parsing 1.Top down parsing (start with start symbol)
2.Botttom up parsing (start from terminals)

Unit-III

Semantic Parsing: Introduction
• In language understanding is the identification of a meaning representation that is detailed

enough to allow reasoning system to make deduction(the process of reaching a decision or answer by

thinking about the known facts).
• But at the same time, is general enough that it can be used across many domains with little to

no adaptation(not capable of adjusting to new conditions or situations).
• It is not clear whether a final, low-level, detailed semantics representation covering various

applications that use some form of language interface can be achieved or
• An ontology(a branch of metaphysics concerned with the nature and relations of being) can be created that can be

created that can capture the various granularities and aspects of meaning that are embodied
in such that a variety of applications.

• None of these approaches are not created, So two compromise approaches have emerged in
the NLP for language understanding.

• In the first approach, a specific, rich meaning representation is created for a limited domain
for use by application that are restricted to that domain, such as travel reservations, football
game simulations, or querying a geographic database.

• In the second approach, a related set of intermediate-specific meaning representation is
created, going from low-level analysis to a middle analysis, and the bigger understanding task
is divided into multiple, smaller pieces that are more manageable, such as word sense
disambiguation followed by predicate-argument structure recognition.

• Here two types of meaning representations: a domain-dependent, deeper representation and
a set of relatively shallow but general-purpose, low-level, and intermediate representation.

• The task of producing the output of the first type is often called deep semantic parsing, and
the task of producing the output of the second type is often called shallow semantic parsing.

• The first approach is so specific that porting to every new domain can require anywhere from
a few modifications to almost reworking the solution from scratch.

• In other words, the reusability of the representation across domains is very limited.
• The problem with second approach is that it is extremely difficult to construct a general

purpose ontology and create symbols that are shallow enough to be learnable but detailed
enough to be useful for all possible applications.

• Therefore, an application specific translation layer between the more general representation
and the more specific representation becomes necessary.

2.Semantic Interpretation
• Semantic parsing can be considered as part of Semantic interpretation, which involves various

components that together define a representation of text that can be fed into a computer to
allow further computations manipulations and search, which are prerequisite for any language
understanding system or application. Here we start with discus with structure of semantic
theory.

• A Semantic theory should be able to:
1.Explain sentence having ambiguous meaning: The bill is large is ambiguous in the sense that

is could represent money or the beak of a bird.
2. Resolve the ambiguities of words in context. The bill is large but need not be paid, the

theory should be able to disambiguate the monetary meaning of bill.
3. Identify meaningless but syntactically well-formed sentence: Colorless green ideas sleep

furiously.
4.Identify syntactically or transformationally unrelated paraphrasers of concept having the

same semantic content.

• Here we look at some requirements for achieving a semantic representation
2.1.Structural ambiguity

• Structure means syntactic structure of sentences.
• The syntactic structure means transforming the a sentence into its underlying syntactic

representation and in theory of semantic interpretation refer to underlying syntactic
representation.

2.2.Word Sense
• In any given language, the same word type is used in different contexts and with different

morphological variants to represent different entities or concepts in the world.
• For example, we use the word nail to represent a part of the human anatomy and also to

represent the generally metallic object used to secure other objects.

2.3.Entity and Event Relation
• The next important component of semantic interpretation is the identification of various

entities that are sparkled across the discourse using the same or different phrases.
• The predominant tasks have become popular over the years: named entity recognition and

coreference resolution.

2.4.Predicate-Argument Structure

• Once we have the word-sense, entities and events identified, another level of semantics structure

comes into play: identifying the participants of the entities in these events.

• Resolving the argument structure of predicate in the sentence is where we identify which entities

play what part in which event.

• A word which functions as the verb does here, we call a predicate and words which function as

the nouns do are called arguments. Here are some other predicates and arguments:

• Selena slept

argument predicate

Tom is tall

argument predicate

Percy placed the penguin on the podium

argument predicate argument argument
• “Sanchon serves vegetarian food” can be described in FOPC as: Server (Sanchon,

VegetarianFood)
• Generally, this process can be defined as the identification of who did what to whom,

where, why and how.

2.5.Meaning Representation

• The final process of the semantic interpretation is to build a semantic representation or meaning

representation that can then be manipulated by algorithms to various application ends.

• This process is sometimes called the deep representation.

• The following two examples

3.System Paradigms

• It is important to get a perspective on the various primary dimensions on which the problem of

semantic interpretation has been tackled.

• The approaches generally fall into the following three categories: 1.System architecture 2.Scope 3.

Coverage.

• System Architectures

a.Knowledge based: These systems use a predefined set of rules or a knowledge base to obtain

a solution to a new problem.

b.Unsupervised: These systems tend to require minimal human intervention to be functional by

using existing resources that can be bootstrapped for a particular application or problem domain.

c.Supervised: these systems involve the manual annotation of some phenomena that appear in a

sufficient quantity of data so that machine learning algorithms can be applied.

d.Semi-Supervised: manual annotation is usually very expensive and does not yield enough data to

completely capture a phenomenon. In such instances, researches can automatically expand the data

set on which their models are trained either by employing machine-generated output directly or by

bootsrapping off an existing model by having humans correct its output.

2.Scope:

a.Domain Dependent: These systems are specific to certain domains, such as air travel

reservations or simulated football coaching.

b.Domain Independent: These systems are general enough that the techniques can be applicable

to multiple domains without little or no change.

3.Coverage:

a.Shallow: These systems tend to produce an intermediate representation that can then be

converted to one that a machine can base its action on.

b. Deep: These systems usually create a terminal representation that is directly consumed by a

machine or application.

4.Word Sense

• Word Sense Disambiguation is an important method of NLP by which the meaning of a word

is determined, which is used in a particular context.

• In a compositional approach to semantics, where the meaning of the whole is composed on the

meaning of parts, the smallest parts under consideration in textual discourse are typically the

words themselves: either tokens as they appear in the text or their lemmatized forms.

• Words sense has been examined and studied for a very long time.

• Attempts to solve this problem range from rule based and knowledge based to completely

unsupervised, supervised, and semi-supervised learning methods.

• Very early systems were predominantly rule based or knowledge based and used dictionary

definitions of senses of words.

• Unsupervised word sense induction or disambiguation techniques try to induce the senses or

word as it appears in various corpora.

• These systems perform either a hard or soft clustering of words and tend to allow the tuning of

these clusters to suit a particular application.

• Most recent supervised approaches to word sense disambiguation, usually application-

independent-level of granularity (including small details). Although the output of supervised

approaches can still be amendable to generating a ranking, or distribution, of membership

sense.

• Word sense ambiguities can be of three principal types: i.homonymy ii.polysemy iii.categorial

ambiguity.

• Homonymy defined as the words having same spelling or same form but having different and

unrelated meaning. For example, the word “Bat” is a homonymy word because bat can be an

implement to hit a ball or bat is a nocturnal flying mammal also

• Polysemy is a Greek word, which means “many signs”. polysemy has the same spelling but

different and related meaning.

• Both polysemy and homonymy words have the same syntax or spelling. The main difference

between them is that in polysemy, the meanings of the words are related but in homonymy, the

meanings of the words are not related.

• For example: Bank Homonymy: financial bank and river bank

Polysemy: financial bank, bank of clouds and book bank: indicate collection of

things.

• Categorial ambiguity: the word book can mean a book which contain the chapters or

police register which is used to enter the charges against some one.

text book and note book

• In the above note book belongs to the grammatical category of noun, and text book is verb.

• Distinguishing between these two categories effectively helps disambiguate these two senses.

• Therefore categorical ambiguity can be resolved with syntactic information (part of speech)

alone, but polyseme and homonymy need more than syntax.

• Traditionally, in English, word senses have been annotated for each part of speech separately,

whereas in Chinese, the sense annotation has been done per lemma.

Resources

• As with any language understanding task, the availability of resources is key factor in the

disambiguation of the wors senses in corpora.

• Early work on wors sense disambiguation used machine readable dictionaries or thesaususes

as knowledge sources.

• Two prominent sources were the Longman dictionary of contemporary English (LDOCE) and

Roget’s Thesaurus.

• The biggest sense annotation corpus OntoNotes released through Lissuistic Data Consortium

(LDC).

• The Chinese annotation corpus is HowNet.

Systems
• Researchers have explored various system architectures to address the sense disambiguation

problem.
• We can classify these systems into four main categories: i. rules based or knowledge ii.

Supervised iii.unsupervised iv. Semisupervised
Rule Based:

• The first generation pf word sense disambiguation systems was primarily based on dictionary
sense definitions.

• Much of this information is historical and cannot readily be translated and made available for
building systems today. But some of techniques and algorithms are still available.

• The simplest and oldest dictionary based sense disambiguation algorithm was introduced by
leak.

• The core of the algorithm is that the dictionary sense whose terms most closely overlap with
the terms in the context.

• Another dictionary based algorithm was suggested Yarowsky.
• This study used Roget’s Thesaurus categories and classified unseen words into one of these 1042

categories based on a statistical analysis of 100 word concordances for each member of each category.
• The method consists of three steps, as shown in Fig.
• The first step is a collection of contexts.
• The second step computes weights for each of the salient words.
• P(w|Rcat) is the probability of a word w occurring in the context of a Roget’s Thesaurus category Rcat.
• P(w|Rcat) |Pr(w) , the probability of a word (w) appearing in the context of a Roget category divided

by its overall probability in the corpus.

• Finally, in third step, the unseen words in the test set are classified into the classified into the category
that has the maximum weight.

Supervised
• The simpler form of word sense disambiguating systems the supervised approach, which

tends to transfer all the complexity to the machine learning machinery while still requiring
hand annotation tends to be superior to unsupervised and performs best when tested on
annotated data.

• These systems typically consist of a machine learning classifier trained on various features
extracted for words that have been manually disambiguated in a given corpus and the
application of the resulting models to disambiguating words in the unseen test sets.

• A good feature of these systems is that the user can incorporate rules and knowledge in the
form of features.

Classifier:
• Probably the most common and high performing classifiers are support vector machine

(SVMs) and maximum entropy classifiers.
Features: Here we discuss a more commonly found subset of features that have been useful in
supervised learning of word sense.
• Lexical context: The feature comprises the words and lemma of words occurring in the entire

paragraph or a smaller window of usually five wors.
• Parts of speech : the feature comprises the POS information for words in the window

surrounding the word that is being sense tagged.

• Bag of words context: this feature comprises using an unordered set of words in the context
window.

• Local Collections : Local collections are an ordered sequence of phrases near the target word
that provide semantic context for disambiguation. Usually, a very small window of about
three tokens on each side of the target word, most often in contiguous pairs or triplets, are
added as a list of features.

• Syntactic relations: if the parse of the sentence containing the target word is available, then
we can use syntactic features.

• Topic features: The board topic, or domain, of the article that word belongs to is also a good
indicator of what sense of the word might be most frequent.

• Semantic analysis starts with lexical semantics, which studies individual words’

meanings (i.e., dictionary definitions).

• Semantic analysis then examines relationships between individual words and analyzes

the meaning of words that come together to form a sentence.

• This analysis provides a clear understanding of words in context. For Example:

“The boy ate the apple” defines an apple as a fruit.

“The boy went to Apple” defines Apple as a brand or store.

https://www.youtube.com/watch?v=eEjU8oY_7DE
https://www.youtube.com/watch?v=W7QdqCrX_mY
https://www.youtube.com/watch?v=XLvv_5meRNM
https://www.geeksforgeeks.org/understanding-semantic-analysis-
nlp/#:~:text=Semantic%20Analysis%20is%20a%20subfield,process%20to%20us%20as%20humans.

https://www.youtube.com/watch?v=eEjU8oY_7DE
https://www.youtube.com/watch?v=W7QdqCrX_mY
https://www.youtube.com/watch?v=XLvv_5meRNM

• What is deep parsing in NLP?
In deep parsing, the search strategy will give a complete syntactic structure to a sentence. It is the task of parsing

a limited part of the syntactic information from the given task. It is suitable for complex NLP applications. It can be used

for less complex NLP applications.

• How can semantics be represented in natural language processing systems?

The semantics, or meaning, of an expression in natural language can be abstractly represented as a logical form.

Once an expression has been fully parsed and its syntactic ambiguities resolved, its meaning should be uniquely

represented in logical form.

• What is meant by semantic translation?

Semantic translation is the process of using semantic information to aid in the translation of data in one

representation or data model to another representation or data model.

• Semantic meaning can be studied at several different levels within linguistics. The three major types of semantics

are formal, lexical, and conceptual semantics

Categories of Semantics
Nick Rimer, author of Introducing Semantics, goes into detail about the two categories of semantics. "Based on the
distinction between the meanings of words and the meanings of sentences, we can recognize two main divisions in the
study of semantics: lexical semantics and phrasal semantics. Lexical semantics is the study of word meaning, whereas
phrasal semantics is the study of the principles which govern the construction of the meaning of phrases and of
sentence meaning out of compositional combinations of individual lexemes.
A bird's bill, also called a beak, A bird's horny projecting jaws; a bill

https://www.thoughtco.com/lexeme-words-term-1691225

Unit-IV
Predicate Argument Structure:
Predicate Argument Structure
Meaning Representation Systems
Software

Predicate Argument Structure
• Shallow semantics parsing or semantic role labelling, is the process of identifying the various

arguments of predicates in a sentence.
• In linguistics, predicate refers to the main verb in the sentence. Predicate takes arguments.

• The role of Semantic Role Labelling (SRL) is to determine how these arguments are

semantically related to the predicate.

• Consider the sentence "Mary loaded the truck with hay at the depot on Friday".

• Loaded' is the predicate. Mary, truck and hay have respective semantic roles of loader, bearer

and cargo. Mary->loader, truck->bearer hay->cargo

• We can identify additional roles of location (depot) and time (Friday).

• The job of SRL is to identify these roles so that NLP tasks can "understand" the sentence.

• Often an idea can be expressed in multiple ways. Consider these sentences that all mean the

same thing: "Yesterday, Kristina hit Scott with a baseball"; "Scott was hit by Kristina yesterday

with a baseball"; "With a baseball, Kristina hit Scott yesterday"; "Kristina hit Scott with a

baseball yesterday".

• Either constituent or dependency parsing will analyze these sentence syntactically. But

syntactic relations don't necessarily help in determining semantic roles.

• SRL is useful in any NLP application that requires semantic understanding: machine translation, information

extraction, text summarization, question answering, and more.

Resources:

• The late 1990s saw the emergence of two important corpora that are semantically tagged, one is

FrameNet and the other is PropBank.

• These resources have begun a transition from a long tradition of predominantly rule-based approaches

toward more data-oriented approaches.

• These approaches focus on transforming linguistic insights into features, rather than into rules and

letting a machine learning framework use those features to learn a model that helps automatically tag

the semantic information encoded in such resources.

• FrameNet is based on the theory of frame semantics, where a given predicate invokes a semantic

frame, this instantiating some or all of the possible semantic roles belonging to that frame.

• PropBank on the, on the other hand, is based on Dowty’s prototype theory and uses a more
linguistically neutral view in which each predicate has a set of core arguments that are
predicate dependent and all predicates share a set of non-core or adjunctive, arguments.

FrameNet
• FrameNet contains frame-specific semantic annotation of a number of predicates in English.
• It contains tagged sentences extracted from British National Corpus (BNC).
• The process of FrameNet annotation consists of identifying specific semantic frames and

creating a set of frame-specific roles called frame elements.
• Then, a set of predicates that instantiate the semantic frame, irrespective of their

grammatical category, are identified, and a variety of sentences are labelled for those
predicates.

• The labelling process entails identifying the frame that an instance of the predicate lemma
invokes, then identifying semantic arguments for that instance, and tagging them with one of
the predetermined ser of frame elements for that frame.

• The combination of the predicate lemma and the frame that its instance invokes is called a
lexical unit (LU).

• This is therefore the pairing of a word with its meaning.
• Each sense of a polysemous word tends to be associated with a unique frame.

PropBank (propositional Bank)
• PropBank only includes annotation of arguments of verb predicates.

• The arguments are tagged as either core arguments, with labels of the type ARGN, where N
takes values from 0 to 5, or adjunctive arguments(listed in table) with labels of the type
ARGM-X, where X can take values such as TMP for temporal, LOC for locative and so on.

• Adjunctive arguments share the same meaning across all predicates, where as the meaning
of core arguments has to be interpreted in connection with a predicate.

• ARG0 in the PROTO-AGENT (usually the subject of the a transitive verb, ARG1 is the PROTO-PATIENT (usually
its direct object of the transitive verb).

• Table 4-1 shows a list of core arguments for the predicates operate and author.
• Note that some core arguments, such as ARG2 and ARG3, do not occur with author.
• This is explained by the fact that not all core arguments can be instantiated by all senses of all predicates.
• A list of core arguments that can occur with a particular sense of the predicate, along with their real-world

meaning, is present in a file called the frames file. One frames is associated with each predicate.

https://towardsdatascience.com/understanding-frame-semantic-parsing-in-nlp-bec84c885061

