
Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

FCFS:

Consider the performance of FCFS Scheduling

in a dynamic situation:

Example:

one CPU -Bound process and

many I/O Bound processes

1) CPU -Bound process will get and hold the

CPU.

2) I/O Bound processes will finish their I/O and

move into the ready queue., waiting for CPU.

3) I/O devices are idle.

4) CPU -Bound process finishes its CPU burst

and moves to an I/O device.

5) All the I/O Bound processes will finish their

short CPU burst and move back to the I/O

queues.

6) at this point CPU sits idle.

7) CPU -Bound process will then move back to

the ready queue and be allocated the CPU.

8) again, All the I/O Bound processes end up

waiting in the ready queue until the CPU -

Bound process is done.

Convoy effect : as all the other processes wait

for the one big process to get off the CPU.

--

Preemptive SJF scheduling : is sometimes

called shortest-remaining- time-first

scheduling (SRTF)

Example:1

p1 remain time 7-2=5

p2 =4 so p1>p2 allow p2 to execute

 at 4th unit time p3=1 has arrived

p2 remain time 4-2=2

 compare p2 >p3 i.e p1=5 , p2=2 , p3=1

so allow p3 for execution then

at 5th unit time p3 completed and p4 =4 has

arrived in ready queue we have

p1=5, p2=2, p4=4 --------> so p2 is small then

p2 gets the chance to execute then p4 and p1.

 waiting time= service time - arrival time

waiting time of p1 = (11-2)-0 =9

 waiting time of p2 = (5-2) -2= 1

waiting time of p3= (4-4)=0

waiting time of p4= 7-5=2

Average waiting time = (9+1+0+2)/4=3ms

Example:2

p1=8-1=7 remaining time

p2 = 4 p1>p2 ..

at 2 unit time p3 =9

p1=7, p3=9, remaining time p2=3

at 3 unit time p4=5 has arrived

p1=7, p3=9, p4=5 ,, remaining time p2=2

p4=5 smaller burst time

p1=7 , p3=9 in ready queue

p1 then p3

at 3 unit time p3 pri #5 > p2 pri#2 (less is high

priority) p3 in ready queue

at 5 unit time p4 pri# 1

p2 ---2

p3--- 5

p4----1

p4 is allocated with CPU=== completed

9 unit time ---- p2 allocated with CPU

at 10 unit time p1 with pri#4

p2 is running pri#2

p3 in ready queue with pri#5

p1 ------------pri#4

p2 conti....

at 12 unit p5 with Pri#3

p2 is running, p3 and p1new p5

p2 to continu...

p3 pri 5, p1 pri-4, p5 pri#3

Consider set of n tasks with known runtimes

R1,R2, Rn to be run uniprocessor machine .

which of the following scheduling algorithm

will result in the maximum throughput?

Ans: SJF

starvation problem:

high pri# 0 ---- low pri# 127

suppose a process low pri#127

Aging technique

increase pri by 1 for every 15 minutes

 come to pri#0 not more than 32 hours

Round Robin:

Time quantum/time slice is defined.

2 cases:

1)TQ > CPU burst time

tq=4ms

cpu burst =3ms=== process voluntarily releases

CPU and scheduler selects the next process

2) tq < cpu burst time

once the timer expires , process is preempted

and added at the back end of the ready queue.

If the time quantum size is 2 units of an there is

only one job of 14 units time unit in ready

queue, Round Robin scheduling algorithm will

cause_______ context switches.

Ans: 6

Example:

Consider the following processes with arrival

time and burst time. Calculate average

turnaround time, average waiting time and

average response time using round robin with

time quantum 3?

1) At 0(Zero) unit time --- CPU is idle.

2) At 1 unit time --- P4 =9 BT has arrived...and

Schedule on CPU for 1 time quantum (3ms)

3) during p4 execution time --- p5,p3 and p2

processes are arrived and placed in ready queue.

p4 is preempted after 1tq ,timer expires. moved

to back end of ready queue. i.e.

P5=2 P3=7 P2=6 P4=6

4) p5 is scheduled for next... 1 tq but it required

only 2 ms , swap out then p3 is scheduled 1tq

ready queue: p2, p4,p1,p6 --- p3=4ms

turnaround time= completion time- arrival time

(or)

Turnaround time= Burst time + waiting time

Waiting time= service time - arrival time

Response time =first service time -arrival time

--

CPU Scheduling Algorithms:

1) FCFS (Non-Preemptive)

2) SJF (Preemptive (or) Non-Preemptive)

3) Priority (Preemptive (or) Non-Preemptive)

4) Round Robin (purely preemptive)

--

Another Class of Scheduling Algorithms are:

1) Multilevel Queue Scheduling

2) Multilevel Feedback-Queue Scheduling

--

Multiple -Processor Scheduling:

Asymmetric multiprocessing

Symmetric multiprocessing(SMP)

Processor Affinity

Load Balancing

