
25-06-2022

Ruby Programming 1-1

Introducing Ruby

• Ruby is a modern, object-oriented scripting language created by
Yukihiro Matsumoto (Matz).

• Ruby is the language’s actual name and not an acronym.
• Matz was influenced by Smalltalk, Perl, Python, C++, Lisp, and ADA.
• Matz began working on Ruby in February of 1993 and released his

first version in December of 1995.
• Ruby lacked a “Killer App” to demonstrate its capabilities.
• Enter Ruby on Rails, a web-based application development

framework allowing website applications to be built using Ruby.

Ruby Programming 1-2

Ruby is Simple Yet Powerful

• Ruby is interpreted
• Ruby supports a natural English-like

programming style
• Ruby has light syntax requirements

1

2

25-06-2022

Ruby Programming 1-3

Ruby Is Object Oriented
• Ruby is as close to 100 percent object-oriented as

it gets.
• Things that describe or characterize an object,

such as size or type, are referred to as object
properties.

• Actions that can be taken against the object or
which the object can be directed to perform are
stored as part of the object in methods.

• Ruby treats numbers (as well as other primitive
data types) as objects.

Ruby Programming 1-4

Ruby Is Extremely Flexible
• Processing text files
• Network programming
• Application prototyping
• System administration
• Web development

3

4

25-06-2022

Ruby Programming 1-5

Ruby Exists in Many Different
Environments

• Ruby can run directly on Microsoft Windows,
Mac OS X, and multiple versions of UNIX and
Linux.

• Using the Ruby on Rails framework, Ruby also
facilitates the development and execution of
web applications.

• Ruby also runs within various other virtual
machine environments (JRuby, IronRuby).

Ruby Programming 1-6

Getting Ready to Work with Ruby

5

6

25-06-2022

Ruby Programming 1-7

Determining Whether Ruby Is Already
Installed

Figure 1-7
Retrieving
information
about the
version of
Ruby installed
on the
computer.

Ruby Programming 1-8

Determining Whether Ruby Is Already
Installed (continued)

• On Mac OS X: Type the following command at
the command prompt and press Enter.

ruby –v
• Assuming the preceding command worked,

type the following command.
irb

• You should see the irb command prompt as
shown here:

irb(main):001:0>

7

8

25-06-2022

Ruby Programming 1-9

Determining Whether Ruby Is Already
Installed (continued)

• On UNIX and Linux: Type the following
command at the command prompt and
press Enter.

irb

• You should see the irb command prompt as
shown here:

irb(main):001:0>

Ruby Programming 1-10

Installing or Upgrading Ruby

• Microsoft Windows: Visit www.ruby-
lang.org/en/downloads/, download the
Windows installer, and double-click on it.

• Mac OS X: Ruby is preinstalled on all
version of MAC OS X 3 and later.

9

10

25-06-2022

Ruby Programming 1-11

Working with Ruby

Ruby Programming 1-12

Working at the Command Prompt

• You can interact with Ruby from the command
line.

• To do so, access the command prompt and
type ruby.

Microsoft Windows Mac OS X\Unix\Linux
C:> ruby $ ruby
puts "Hello World!" puts "Hello World!"

^d ^d
Hello World! Hello World!
C:> $

11

12

25-06-2022

Ruby Programming 1-13

IRB - Interactive Ruby
• To start the IRB, type irb and press Enter.

irb
irb(main):001:0>

• The irb command prompt consists of several parts, separated by colons:
- (main).The word listed inside the parentheses identifies the current

class\object (in this case, it’s the main object).
- 001. This three-digit number represents a history showing the number of

commands that have been entered for the current working session. A value
of 001 indicates that that IRB is waiting for the first command to be entered.

- 0. The last number that makes up the IRB command prompt represents the
current queue depth when working with a class. (You’ll learn what this means
in Chapter 2, “Interacting with Ruby.”)

- >. Identifies the end of the command prompt.

Ruby Programming 1-14

IRB - Interactive Ruby (continued)

Example:

C:\>irb

irb(main):001:0> "Hello World!"

=> "Hello World!"

irb(main):002:0> puts "Hello World!"

Hello World!

=> nil

irb(main):003:0>

13

14

25-06-2022

Ruby Programming 1-15

FXRI - Interactive Ruby Help and
Console

Figure 1-9
In addition to
providing
access to help
information,
fxri also
provides
access to the
IRB.

Ruby Programming 1-16

Developing Ruby Scripts

15

16

25-06-2022

Ruby Programming 1-17

Creating Ruby Scripts on Microsoft
Windows

To create and save Ruby script files, you need
access to a good text or script editor.

– Notepad
– SciTE (Editor installed with Ruby on Windows)
– Sublime Editor

Ruby Programming 1-18

Creating Your First Ruby Program

• Open your code editor and create a new file
named HelloWorld.rb.

• Add the following statement and save the
file.

puts "Hello World! "

17

18

25-06-2022

Ruby Programming 1-19

Running Your Ruby Proram

• At the command prompt, navigate to the folder
where you stored your new Ruby script file and
type:

ruby HelloWorld.rb

• Alternatively, specify the path as part of your
command:

ruby c:\Ruby_Scripts\HelloWorld.rb (Windows)
ruby /Ruby_Scripts/HelloWorld.rb (Mac OS X, Linux, UNIX)

19

20

25-06-2022

Reading & Printing Statements(I/O)
• Puts “cse-3” # with new line
• Print “mgit” # with out new line
abc = 100
puts “value=#{abc}“

• gets use to read data from user
• Gets takes data in the form of string only
• Gets adds new line character at the end of the data
• Mgit mgit\n
• Gets.chomp use to read the data from the user with out

new line character
• Mgitmgit

• After reading the data we can able to convert
in to required data type

• Ex:
• 1. .to_i -> # to integer
• 2. .to_f -> to float

21

22

25-06-2022

1.rb

• puts "mrenuka cse3 mgit 99"

2.rb

• puts "rohith"
• puts "cse3"
• print "hello "
• print "mgit"
• puts
• a =909
• print "#{a}"

23

24

25-06-2022

3.rb
• puts "enter ur name"
• name=gets
• puts "#{name}"
• puts "enter ur roll no "
• rno=gets.to_i
• puts "#{rno}"
• puts "enter ur gpa"
• pre=gets.to_f
• puts "#{pre}"

Ruby Comments

• Ruby comments are non executable lines in a
program. These lines are ignored by the
interpreter hence they don't execute while
execution of a program. They are written by a
programmer to explain their code so that others
who look at the code will understand it in a
better way.

• Types of Ruby comments:
• Single line comment #-----
• multi line comment

25

26

25-06-2022

• Single line comment
#This is single line comment.

• Multi line comments:
=begin

we r form
mgit cse 3

=end

operators:
• Unary operator +,-,~
• Arithmetic operator +,-,*,%,/,**
• Bitwise operator &,|,~,^,<<,>>
• Logical operator &&,||,!,(and,or,,not)
• Ternary operator ?,:
• Assignment operator =
• Comparison operator >,<,<=,>=,==,===,!=
• Range operator ... and , ...
• 1..5 => 1,2,3,4,5
• 1...5 => 1,2,3,4

27

28

25-06-2022

examples

• Ternary operator ?,:
• Variable=condition?true:false;

Implementing Conditional Logic
if,if-else,if-elsif,case

Ruby Programming

29

30

25-06-2022

• case expression
• [when expression [, expression ...] [then]
• code]...
• [when expression [, expression ...] [then]
• code]...
• [else
• code]
• end

Ruby Programming 4-32

Creating Adaptive Scripts

• You can create scripts that consist of a series of
statements that are executed in sequential order.

• However, some level of conditional execution is
almost always required.

• This execution might involve prompting the
player for permission to play a game and then
either ending or continuing the game based on
an analysis of the player’s response.

31

32

25-06-2022

Ruby Programming 4-33

Creating Adaptive Scripts (continued)

A visual depiction of the application of
conditional logic as required to select between
two alternatives.Figure 4-9
Choosing
between
different
courses of
action.

Ruby Programming 4-34

Creating Adaptive Scripts (continued)

This same basic logic can easily be applied to
the development of a computer program or
script. Figure 4-10
A graphical
representation
of the
conditional
logic used to
determine
whether or not
to start game
play.

33

34

25-06-2022

Ruby Programming 4-35

Creating Adaptive Scripts (continued)

• A flowchart is a tool used to graphically
represent some or all of a script’s logical flow.

• Flowcharts outline the overall design of the
logic involved in designing a computer program
or script.

• Flowcharts can be used to identify different
parts of a program or project, making the
division of work easier when multiple
programmers are involved.

Ruby Programming 4-36

Creating Adaptive Scripts (continued)

Ruby provides numerous ways of applying
conditional logic:

• The if modifier
• The unlessmodifier
• The if expression
• The unless expression
• Case
• The ternary operator

35

36

25-06-2022

Ruby Programming 4-37

Performing Alternative Types of
Comparisons

Ruby Programming 4-38

Comparison Operators

Ruby provides programmers with access to a
range of comparison operators.

Operator Description
== Equal
!= Not equal
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

37

38

25-06-2022

Ruby Programming 4-39

Conditional Logic Modifiers

Ruby Programming 4-40

The if Modifier
• Using the if modifier, you can attach a conditional test to the end of a

Ruby statement to control the execution of that statement.

print "Enter your age and press Enter: "

answer = STDIN.gets

answer.chop!

puts "You must be 18 or older to play this game!" if answer.to_i < 18

39

40

25-06-2022

Ruby Programming 4-41

The Unless Modifier

• As an alternative to the if modifier, you can
use the unless modifier.

• The unless modifier is the logical opposite of
the if modifier.

print "Enter your age and press Enter: "

answer = STDIN.gets

answer.chop!

puts "You must be 18 or older to play this game!" unless answer.to_i > 17

Ruby Programming 4-42

Working with if and unless
Expressions

41

42

25-06-2022

Ruby Programming 4-43

Creating if Expressions
• if expressions can control the execution of more than one statement.
• The if expression supports a very flexible syntax that provides the ability to

use the expression in a number of different ways.

if condition then

statements

elsif condition then

statements

.

.

.

else

statements

end if

Ruby Programming 4-44

Replacing if Modifiers with if
Expressions

print "Enter your age and press Enter: "

answer = STDIN.gets

answer.chop!

puts "You must be 18 or older to play this game!" if answer.to_i < 18

print "Enter your age and press Enter: "

answer = STDIN.gets

answer.chop!

if answer.to_i < 18 then

puts "You must be 18 or older to play this game!"

end

43

44

25-06-2022

Ruby Programming 4-45

Creating Single Line if Expressions

• The syntax support of the if expression is very
flexible, allowing for many formats. For
example, the following example demonstrates
how to format an if expression that fits on a
single line.

x = 10

if x == 10 then puts "x is equal to 10" end

Ruby Programming 4-46

Using the else Keyword to Specify
Alternative Actions

• You can modify an if expression to execute
one or more statements in the event the test
condition evaluates as being false.

x = 10

if x == 10 then

puts " x is equal to 10"

else

puts " x does not equal 10"

end

45

46

25-06-2022

Ruby Programming 4-47

Checking Alternative Conditions

• You could use the if expression’s optional
elsif keyword to rewrite this example as
shown here.
if x == 10 then

puts "x is 10"
elsif x == 15 then

puts "x is 15"
elsif x == 20 then

puts "x is 20"
elsif x == 25 then

puts "x is 25"
end

Ruby Programming 4-48

Creating Unless Expressions

• The unless expression is the polar opposite
of the if expression.

print "Enter your age and press Enter: "

answer = STDIN.gets

answer.chop!

unless answer.to_i > 17

puts "You must be 18 or older to play this game!"

end

47

48

25-06-2022

Ruby Programming 4-49

Using case Blocks to Analyze Data

Ruby Programming 4-50

case Block Syntax
Ruby also provides the case block as a means of comparing a series of
expressions against a single expression to see whether any of the
expressions being evaluated result in equivalent value.

case expression
when value

statements
.
.
.

when value
statements

else
statements

end

49

50

25-06-2022

Ruby Programming 4-51

A case Block Example
puts "\nWelcome to the vacation calculator!\n\n“

print "How many years have you worked for the company? \n\n: "
answer = STDIN.gets
answer.chop!
answer = answer.to_i

case
when (answer.between?(1, 5))

puts "You are entitled to 1 week of vacation per year."
when (answer.between?(6, 10))

puts "You are entitled to 2 weeks of vacation per year."
when (answer.between?(11, 30))

puts "You are entitled to 3 weeks of vacation per year."
else

puts "You are entitled to 5 weeks of vacation per year."
end

Ruby Programming 4-52

Using the Ternary Operator

51

52

25-06-2022

Ruby Programming 4-53

A Ternary Operator Example
• The ternary operator (?:) evaluates the values of two different

expressions and makes a variable assignment as a result of that
comparison.

variable = expression ? true_result : false_result

print "\n\nEnter your age and press Enter: "

answer = STDIN.gets

answer.chop!

answer = answer.to_i

result = answer < 18 ? "denied!" : "approved!"

puts "\n\nYour access has been " + result + "\n\n"

Ruby Programming 4-54

Nesting Conditional Statements

53

54

25-06-2022

Ruby Programming 4-55

Nesting Example
• Some situations require more complicated analysis than can be

accomplished using an individual conditional modifier expression.
• One way of addressing this type of challenge is to embed one conditional

statement inside another through a process called nesting.
redStatus = "Go"
blueStatus = "Go"
greenStatus = "Go“

if redStatus == "Go" then
if blueStatus == "Go" then

if greenStatus == "Go" then
puts "All systems are go. Prepare for launch!"

end
end

end

Ruby Programming 4-56

Combining and Negating Logical
Comparison Operations

55

56

25-06-2022

Ruby Programming 4-57

Ruby Boolean Operators
Operator Type Example

and Evaluates as true if both x > 1 and x < 10
comparisons evaluate as True

&& Evaluates as true if both x > 1 && x < 10
comparisons evaluate as True

or Evaluates as true if either x = 1 or x = 10
comparison evaluates as True

|| Evaluates as true if either x = 1 || x = 10
comparison evaluates as True

not Reverses the value of a not (x > 5)
comparison

! Reverses the value of a ! (x > 5)
comparison

Ruby Programming 1-58

Ruby Boolean Operators (continued)

• The and and && operators are essentially identical.
• The and operator has a higher level of precedence than the && operator.
• The or has a higher level of precedence than the || operator.
• The and and && operators evaluate the second operand only if the first

operand is true.
• The or and || operators evaluate the second operand only if the first

operand is false.

print "Enter your age and press Enter: "
reply = STDIN.gets
reply.chop!
reply = reply.to_i

puts "You are old enough!" if reply >= 18 && reply <= 65

57

58

25-06-2022

Ruby Programming 60

In this chapter, you:

• Use language constructs to create loops
• Use loop modifiers
• Execute looping methods
• Alter loop execution
• Create the Superman Movie Trivia Quiz

Objectives

59

60

25-06-2022

Ruby Programming 61

Understanding Loops

Ruby Programming 62

Understanding Loops (continued)

• A loop is a collection of statements that execute repeatedly as a unit.
• Loops facilitate the processing of large text files or the collection of

unlimited amounts of user input.
• Loops also provide the ability to develop scripts that can repeat the

execution of any number of commands.
• Ruby supports several types of loops, including:

- Language constructs: Commands that are part of the core Ruby
scripting language.

- Modifiers: A modifier appended to the end of a Ruby statement to
repeat the statement until a specified condition is met.

- Methods: Loops provided as methods associated with specific
objects.

61

62

25-06-2022

Ruby Programming 63

Using Language Constructs to Create Loops

Ruby Programming 64

Using Language Constructs to Create Loops
(continued)

Ruby supports three types of loops provided as
part of the core programming language.

• while
• until
• for

63

64

25-06-2022

Ruby Programming 65

Working with while Loops

The while loop is a loop that executes as long as a tested condition is
true. The syntax for this loop is outlined here:

while Expression [do | :]

Statements

end

Ruby Programming 66

Working with while Loops
(continued)

Example
x = 1
while x <= 5 do
puts x
x += 1

end

Output
1
2
3
4
5

65

66

25-06-2022

Ruby Programming 67

Working with until Loops

The until loop is pretty much the opposite of the while loop. The
until loop executes until the tested condition becomes true.

until Expression [do | :]

Statements

end

Ruby Programming 68

Working with until Loops
(continued)

Example
x = 1
until x >= 5 do
puts x
x += 1

end

Result
1
2
3
4
5

67

68

25-06-2022

Principles of 69

Working with for…in Loops

The for…in loop is designed to process collections of data.

for Variable in Expression [do | :]
Statements

End

69

70

25-06-2022

Ruby Programming 71

Working with for…in Loops (continued)

Example
MyList = ["Molly", "William", "Alexander", "Jerry", "Mary"]
for x in MyList

print "Hi ", x, "!\n"
end

Output
Hi Molly!
Hi William!
Hi Alexander!
Hi Jerry!
Hi Mary!

Ruby Programming 72

Using Loop Modifiers

71

72

25-06-2022

Ruby Programming 73

Using Loop Modifiers (continued)

• A loop modifier is an expression added to the end of another Ruby
statement.

• Loop modifiers execute the statements to which they are attached as
loops.

• Ruby supports both while and until loop modifiers.
• Loop modifiers are perfect for repeating the execution of a single

statement.

Ruby Programming 74

The while Modifier

The while modifier evaluates a Boolean expression and then conditionally
executes the statement to which is has been appended as long as that
condition remains true.

Expression while Condition

Example

counter = 1

counter += 1 while counter < 10

puts counter

73

74

25-06-2022

Ruby Programming 75

The until Modifier

The until modifier executes the statement to which it has been appended
repeatedly until a specified condition is evaluated as being true.

Expression until Condition

Example

counter = 1

counter += 1 until counter < 10

puts counter

Ruby Programming 76

Executing Looping Methods

75

76

25-06-2022

Ruby Programming 77

Executing Looping Methods (continued)

• Ruby supports a number of looping methods belonging to various classes.
• These methods simplify loop construction and help to eliminate the

chance of errors that sometimes occur when working with built-in
language looping constructions

• Looping methods include:
- each 55
- times 5
- upto 1-100
- downto 100-1
- step 100-200 5  100,105,110,115,..200
- loop

Ruby Programming 78

Working with the each Method

The each method is supported by a number of different Ruby classes, including
the Array, Dir, Hash, and Range classes.

Object.each { |i| Statement }

Example

MyList = ["Molly", "William", "Alexander", "Jerry", "Mary"]
MyList.each do |x|
print "Hi ", x, "!\n"

end

77

78

25-06-2022

Ruby Programming 79

Working with the times Method

The times method is used to execute a code block a specific number of
times. The times method is provided by the Integer class.

Integer.times { |i| Statement }

Example
puts "Watch me count!"
3.times {|x| puts x}

Output
1
2
3

8096283937

Ruby Programming 80

Working with the upto Method
The upto method is provided by the Integer class. It generates a loop that
iterates a predetermined number of times.

Integer.upto(EndValue) { |i| Statement }

Example
1.upto(5) do |x|
print x, ") Hello!\n"

end

Output
1) Hello!
2) Hello!
3) Hello!
4) Hello!
5) Hello!

79

80

25-06-2022

Ruby Programming 81

Working with the downto Method
The downto method is provided by the Integer class. It allows you to set
up a loop that iterates a predetermined number of times, starting at a
specified integer value and counting down to whatever integer value is passed
to it.
Integer.downto(EndValue) { |i| Statement }

Example
3.downto(1) do |x|
print x, ") Hello!\n"

end
puts "That's all folks!“

Output
3) Hello!
2) Hello!
1) Hello!
That's all folks!

Ruby Programming 82

Working with the step Method
The step method is used to set up loops that execute a predefined number
of times. The step method works with the Float and Integer classes.

Number.step(EndNumber, Increment) { |i| Statement }

Example
1.step(10,2) do |x|
print x, ". Counting by 2\n"

end

Output
1. Counting by 2
3. Counting by 2
5. Counting by 2
7. Counting by 2
9. Counting by 2

81

82

25-06-2022

Ruby Programming 83

Working with the loop Method
The loop method belongs to the Kernel module. The loop method
supports two forms of syntax.
loop { Statement }

and

loop do
Statements

end

Example
counter = 1
loop do

print counter.to_s + " "
counter += 1
break if counter == 10

end

Output
1 2 3 4 5 6 7 8 9

Ruby Programming 84

Altering Loop Execution

83

84

25-06-2022

Principles of 85

Prematurely Terminating Loop Execution

The break command provides the ability to terminate the execution of a loop
at any time.

loop do
print "Type q to quit this script. "
answer = STDIN.gets
answer.chop!

break if answer == "q"
end

Ruby Programming 86

Repeating the Current Execution of a Loop
The redo command forces a loop to repeat without evaluating its condition
and without iterating.
i = 1
loop do

puts i
redo if i == 3
i += 1

end

Output
1
2
3
3
3
.
.
.

85

86

25-06-2022

Ruby Programming 87

Skipping to the Next Iteration of a Loop
The next command stops the current iteration of the loop and immediately
begins a new iteration. Before the new iteration occurs, the loop condition is
evaluated. The loop only executes again if the analysis of the loop condition
permits it.

for i in 1..5
next if i == 3
puts i

end

Output
1
2
4
5

Ruby Programming 3-88

String Class Methods
Listing of Some of the Methods Belonging to the String Class

Method Description
capitalize Capitalizes the first letter of a string
downcase Converts a string to all lowercase letters
chop Removes the last character from a string
length Returns an integer representing the number of characters

in a string
next Replaces the next letter in a string with the next letter in

the alphabet
reverse Reverses the spelling of a string
swapcase Reverses the case of each letter in a string
upcase Converts a string to all uppercase letters

87

88

25-06-2022

• IIELLO mGIT
• IIELLO mGIT
• LLLELLO mGIT
• pppELLO mGIT

Ruby Programming 90

In this chapter, you:
• Store and manipulate lists using arrays
• Replace and add array items
• Retrieve items from arrays
• Store and manipulate lists using hashes
• Add hash key-value pairs
• Delete hash key-value pairs
• Retrieve data stored in hashes
• Create the Ruby Number Guessing game

Objectives

89

90

25-06-2022

Ruby Programming 91

Storing and Manipulating Lists Using
Arrays

Ruby Programming 92

Options For Managing Data Collections

• As scripts grow more complex, the amount of
data that is managed becomes too large to be
effectively managed using variables.

• Since this data is usually related, it can often
be managed using lists.

• In Ruby, lists can be managed and stored using
one of the following structures:
– Arrays
– Hashes

91

92

25-06-2022

Ruby Programming 93

Working with Lists and Arrays

• A list is a collection of data.
• Lists are created as comma-separated items.
• Lists can be used as the basis for populating arrays.
• An array is an indexed list of items.
• Array indexes begin at 0 and are incremented by 1

each time a new item is added.
• Index numbers can only be whole numbers (integers).
• Arrays are simply viewed as another type of object.

Ruby Programming 94

Working with Lists and Arrays (continued)

• Ruby arrays have an initial element, a final element, and any number of
elements in between.

• Once added to an array, an array element can be referred to by
specifying its index position within the array.

VariableName = [Elements]

Example:

x = [2, 4, 6, 8, 10]

You can use the inspectmethod to view an array’s contents.

irb(main):001:0> puts x.inspect
[2, 4, 6, 8, 10]

93

94

25-06-2022

Ruby Programming 95

Managing Data Using Arrays

• One way to create an array is to assign a list to it.

children = ["Alexander", "William", "Molly"]

• Another option for creating arrays is to use the %w(and) characters.

children = %w(Alexander William Molly)

• Arrays can also be created using the new method.

x = Array.new

Ruby Programming 96

Managing Data Using Arrays (continued)

• New arrays can also be created by assigning the contents of one array to
another array.

x = [1, 2, 3]
y = x

• New arrays can be created by adding two existing arrays together.

x = [1, 2, 3]
y = [4, 5, 6]
z = x + y

95

96

25-06-2022

Ruby Programming 97

Replacing and Adding Array Items

• Ruby permits the retrieval or modification of array contents by specifying
the index number of the item to be replaced or added.

arrayname[indexNo]

Retrieval:

children = ["Alexander", "William", "Molly"]
children[2] = "Mighty One"
puts children.inspect

Assignment:

children = ["Alexander", "William", "Molly"]
children[3] = "Dolly"
puts children.inspect

Ruby Programming 98

Replacing and Adding Array Items
(continued)

• Using the << method, you can add elements to an array by pushing them
onto the end of the array.

Names = []
Names << "Alexander"
Names << "William"
Names << "Molly"

• New items can also be added to the end of an array using the push
method.

Names = []
Names.push("Alexander")
Names.push("William")
Names.push("Molly")

97

98

25-06-2022

Ruby Programming 99

Determining if an Array Is Empty

• Before working with an array, it’s a good idea to check to see if anything is
in it. This can be accomplished using the Array class’s length or size
methods to see if the value that they return is equal to zero.

• The empty? method can also be used to determine if an array is empty.
This method returns a value of true if an array is empty and false if it
contains at least one element.

if children.empty? == false then
children.each {|child| puts child}

else
puts "The children array is empty"

end

Ruby Programming 100

Retrieving Items from an Array

• Ruby provides you with a host of different ways to access data stored in an
array.

• You can retrieve any item located in an array by specifying the name of the
array followed by the index number where the item is stored.

children = ["Alexander", "William", "Molly"]
middleChild = children[1]

• You can also use the Array class’s at method to retrieve an array item
based on its index position.

children = %w(Alexander William Molly)
puts children.at(1)

99

100

25-06-2022

Ruby Programming 101

Retrieving Items from an Array (continued)

• You can use the Array class’s slicemethod to retrieve a series of
elements, referred to as a slice, from an array by enclosing a list or
range of index numbers within a pair of parentheses.

children = %w(Alexander William Molly)
boys = children.slice(0..1)

• The first method retrieves the first element from the specified array.

children = %w(Alexander William Molly)
puts children.first

Ruby Programming 102

Using a Loop to Iterate Through the
Contents of an Array

• The last method retrieves the last element from the specified array.

children = %w(Alexander William Molly)
puts children.last

• While you can certainly use the while and until loop for processing
the contents of a loop, the Array class’s each method is tailor-made for
processing loops.

children = %w(Alexander William Molly)
children.each do |child|

puts child
end

101

102

25-06-2022

Ruby Programming 103

Deleting Items from an Array
• Ruby provides you with a number of different methods that you can use to

delete items stored in arrays.

• Use the Array class’s clearmethod to delete all items stored in an
array.

children = %w(Alexander William Molly)
children.clear

• Use the Array class’s shift method to delete the first element stored in
an array, shifting the index number of all remaining items’ elements down
by one index position.

children = %w(Alexander William Molly)
x = children.shift
puts children.inspect

Ruby Programming 104

Deleting Items from an Array (continued)

• You can delete an item from the end of an array using the Array class’s
pop method.

family = %w(Alexander William Molly Daddy Mommy)
family.pop
family.pop
puts family.inspect

• You may also to delete items based on their value using the Array class’s
deletemethod.

fruit = %w(Apples Oranges Bananas Oranges Grapes)
fruit.delete("Oranges")

103

104

25-06-2022

Ruby Programming 105

Deleting Items from an Array (continued)

• The delete_at method is used to delete an item from an array based
on its index position.

fruit = %w(Apples Oranges Bananas Oranges Grapes)
fruit.delete_at(3)

Ruby Programming 106

Sorting the Contents of an Array
Alphabetically

• By default, items are in an array based on the order in which they are
added.

• You may end up with a list of items that are not in a desired order.
• Use the Array class’s sort method to sort the contents of the array.

fruit = %w(Apples Oranges Bananas Grapes)
puts fruit.sort.inspect

105

106

25-06-2022

Ruby Programming 107

Sorting the Contents in Reverse
Alphabetical Order

• The Array class’s reversemethod reverses the order of array items
after they have been sorted.

fruit = %w(Apples Oranges Bananas Grapes)
puts fruit.sort.reverse.inspect

Result:

["Oranges", "Grapes", "Bananas", "Apples"]

Ruby Programming 108

Searching an Array

• One way to find something stored in an array is to set up a loop to iterate
through the array looking for it.

• Another option is to use the Array class’s include? method to check
and see if the array contains any instances of the item you are looking for.

children = %w(Alexander William Molly)
puts "I found him!" if children.include?("William")

107

108

25-06-2022

Ruby Programming 109

Storing and Manipulating Lists Using
Hashes

Ruby Programming 110

Storing Data Using Unique Keys

• As arrays grow in size, it becomes difficult trying to keep up with the index
positions where individual items are stored.

• As an alternative to arrays, Ruby also supports the storage and retrieval of
data using hashes.

• A hash, sometimes referred to as an associative array or dictionary in
other programming languages, is a list of data stored in key-value pairs.

• Each piece of data stored in a hash is stored as a value and assigned a key,
which uniquely identifies the data.

• Instead of referencing data stored using an index position, as with arrays,
you reference values by specifying their assigned keys.

109

110

25-06-2022

Ruby Programming 111

Creating a Hash

• The syntax that you need to follow when creating a hash and populating it
with an initial set of key-value pairs is outlined here:

variableName = {key => value, key => value, ... key => value}

Example:

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}

Ruby Programming 112

Creating a Hash (continued)

• The previous example can be rewritten and spread across multiple lines to
make is easier to expand.

kids = {"first" => "Alexander",
"second" => "William",
"third" => "Molly"

}

• A hash can also be created using the Hash class’s new method.

kids = Hash.new

111

112

25-06-2022

Ruby Programming 113

Adding a Hash’s Key-Value Pairs

• You can add as many key-value pairs as you want to a hash using the
following syntax.

hashVariable[key] = value

Example:

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
kids["fourth"] = "Dolly"
kids["fifth"] = "Regis"

Ruby Programming 114

Adding a Hash’s Key-Value Pairs
(continued)

• Another way to create a hash is to copy the contents of one hash into a
new hash, as demonstrated here:

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
family = kids

• You also can use the Hash class’s merge method to create a new hash
based on the contents of two existing hashes.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
parents = {"daddy" => "Jerry", "mommy" => "Mary"}
family = kids.merge(parents)

113

114

25-06-2022

Ruby Programming 115

Deleting a Hash’s Key-Value Pairs

• The Hash class’s clearmethod removes all key-value pairs from a hash.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
kids.clear

Ruby Programming 116

Deleting a Hash’s Key-Value Pairs
(continued)

• The Hash class’s deletemethod removes a key-value pair from a hash.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
kids.delete("second")

• The Hash class’s delete_ifmethod is used to delete key-value pairs
from a hash.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
kids.delete_if {|key, value| key >= "third"}

115

116

25-06-2022

Ruby Programming 117

Determining the Number of Key-Value
Pairs in a Hash

• Use the Hash class’s empty?method to determine if a hash contains any
key-value pairs. The method returns a value of true if the specified hash
contains no key-value pairs.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
if kids.empty? == false then

puts kids.inspect
else

puts "The kids hash is empty"
end

Ruby Programming 118

Retrieving Data Stored in Hashes

• Data is extracted from a hash in very much the same way that it is
extracted from an array, only you specify a key instead of an index number.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
x = kids["third"]

117

118

25-06-2022

Ruby Programming 119

Retrieving Data Stored in Hashes
(continued)

• Hashes are not indexed and cannot be processed with a loop like an array.
• Ruby provides you a way around this hash limitation by providing you with

access to the keys method.
• The keys method creates a list of all the keys stored within a specified

hash. Using this list, you can set up a loop to iterate through and process
the hash’s keys.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
puts "\n\nKeys belonging to the kids hash:\n\n"
kids.keys.each do |child|

puts child
end

Ruby Programming 120

Sorting Hash Keys

• Hashes are unordered, storing their key-value pairs in
no particular order.

• However, you can use the keys method’s output to
the sort method prior to looking through a hash’s
keys.

kids = {"first" => "Alex", "second" => "Will", "third" => "Molly"}
kids.keys.sort.each do |child|

puts child
end

119

120

25-06-2022

Ruby Programming 121

Back to the Number Guessing Game

Ruby Programming 122

Designing the Game
Follow these steps:

1. Open your text or script editor and create a new file.
2. Add comment statements to the beginning of the script file to document

the script and its purpose.
3. Define a class representing the terminal window.
4. Define a class representing the Ruby Number Guessing game.
5. Add a display_greetingmethod to the Game class.
6. Add a display_instructionsmethod to the Game class.
7. Add a generate_numbermethod to the Game class.
8. Add a play_gamemethod to the Game class.
9. Add a display_creditsmethod to the Game class.
10. Instantiate script objects.
11. Prompt the player for permission to begin the game.
12. Set up the game’s controlling logic.

121

122

25-06-2022

Ruby Programming 123

Step 1: Create a New Ruby File

1. Open code editor and create a new file.

2. Save the file with a name of
NumberGuessing.rb.

Ruby Programming 124

Step 2: Document the Script and Its
Purpose

#--

Script Name: NumberGuess.rb
Version: 1.0
Author: Jerry Lee Ford, Jr.
Date: March 2010

Description: This Ruby script is a number guessing game
that challenges the player to guess a
randomly generated number in as few
guesses as possible.

#--

123

124

25-06-2022

Ruby Programming 125

Step 3: Define the Screen Class
Define custom classes ---

#Define a class representing the console window
class Screen

def cls #Define a method that clears the display area
puts ("\n" * 25) #Scroll the screen 25 times
puts "\a" #Make a little noise to get the player's attention

end

def pause #Define a method that pauses the display area
STDIN.gets #Execute the STDIN class's gets method to pause

#script execution until the player presses the
#Enter key

end

end

Ruby Programming 126

Step 4: Define the Game Class

The second class definition that you need to add to your new Ruby script is
the Game class. It provides access to five methods that are needed to control
the overall execution of the game.

#Define a class representing the Ruby Number
#Guessing Game
class Game

end

125

126

25-06-2022

Ruby Programming 127

Step 5: Define the
display_greeting Method

#This method displays the game's opening screen
def display_greeting

Console_Screen.cls #Clear the display area

#Display welcome message
print "\t\t Welcome to the Ruby Number Guessing Game!" +
"\n\n\n\n\n\n\n\n\n\n\n\n\n\nPress Enter to " +

"continue.“

Console_Screen.pause #Pause the game

end

Ruby Programming 128

Step 6: Define the
display_instructions Method
#Define a method to be used to present game instructions
def display_instructions

Console_Screen.cls #Clear the display area
puts "INSTRUCTIONS:\n\n" #Display a heading

#Display the game's instructions
puts "This game randomly generates a number from 1 to 100 and"
puts "challenges you to identify it in as few guesses as possible."
puts "After each guess, the game will analyze your input and provide"
puts "you with feedback. You may take as many turns as you need in"
puts "order to guess the game's secret number.\n\n\n"
puts "Good luck!\n\n\n\n\n\n\n\n\n“
print "Press Enter to continue.“

Console_Screen.pause #Pause the game

end

127

128

25-06-2022

Ruby Programming

129

Step 7: Define the generate_number
Method

#Define a method that generates the game's secret
number

def generate_number

#Generate and return a random number from 1 to 100

return randomNo = 1 + rand(100)

end

Ruby Programming 130

Step 8: Define the play_game
Method

#Define a method to be used to control game play
def play_game

#Call on the generate_number method to get a random number
number = generate_number

#Loop until the player inputs a valid answer

loop do

Console_Screen.cls #Clear the display area

#Prompt the player to make a guess
print "\nEnter your guess and press the Enter key: “

reply = STDIN.gets #Collect the player's answer
reply.chop! #Remove the end of line marker
reply = reply.to_i #Convert the player's guess to an integer

#Validate the player's input only allowing guesses from 1 to 100
if reply < 1 or reply > 100 then

redo #Redo the current iteration of the loop
end

129

130

25-06-2022

Ruby Programming 131

Step 8: Define the play_game
Method (continued)

#Analyze the player's guess to determine if it is correct
if reply == number then #The player's guess was correct

Console_Screen.cls #Clear the display area
print "You have guessed the number! Press Enter to continue."
Console_Screen.pause #Pause the game
break

elsif reply < number then #The player's guess was too low
Console_Screen.cls #Clear the display area
print "Your guess is too low! Press Enter to continue."
Console_Screen.pause #Pause the game

elsif reply > number then #The player's guess was too high
Console_Screen.cls #Clear the display area
print "Your guess is too high! Press Enter to continue."
Console_Screen.pause #Pause the game

end

end

end

Ruby Programming 132

Step 9: Define the display_credits
Method

#This method displays the information about the Ruby Number Guessing
#game
def display_credits

Console_Screen.cls #Clear the display area

#Thank the player and display game information
puts "\t\tThank you for playing the Ruby Number Guessing Game.\n\n\n\n"
puts "\n\t\t\t Developed by Jerry Lee Ford, Jr.\n\n"
puts "\t\t\t\t Copyright 2010\n\n"
puts "\t\t\tURL: http://www.tech-publishing.com\n\n\n\n\n\n\n\n\n\n"

end

131

132

http://www.tech-publishing.com\n\n\n\n\n\n\n\n\n\n

25-06-2022

Ruby Programming 133

Step 10: Initialize Script Objects
Main Script Logic --

#Initialize a global variable that will be used to keep track of the

#number of correctly answered quiz questions

$noRight = 0

Console_Screen = Screen.new #Instantiate a new Screen object

SQ = Game.new #Instantiate a new Quiz object

#Execute the Quiz class's display_greeting method

SQ.display_greeting

answer = ""

Ruby Programming 134

Step 11: Get Permission to Start the Game

#Loop until the player enters y or n and do not accept any other
#input

loop do

Console_Screen.cls #Clear the display area

#Prompt the player for permission to start the quiz
print "Are you ready to play the Ruby Number Guessing Game? (y/n): "

answer = STDIN.gets #Collect the player's response
answer.chop! #Remove any extra characters appended to the string

#Terminate the loop if valid input was provided
break if answer == "y" || answer == "n"

end

133

134

25-06-2022

Ruby Programming 135

Step 12: Administering Game Play
#Analyze the player's input
if answer == "n" #See if the player elected not to take the quiz

Console_Screen.cls #Clear the display area

#Invite the player to return and take the quiz some other time
puts "Okay, perhaps another time.\n\n“

else #The player wants to take the quiz

#Execute the Quiz class's display_instructions method
SQ.display_instructions

loop do

#Execute the Quiz class's disp_q method and pass it
#arguments representing a question, four possible answers, and the
#letter representing the correct answer
SQ.play_game

Ruby Programming 136

Step 12: Administering Game Play
(continued)

Console_Screen.cls #Clear the display area

#Prompt the player for permission to start the quiz

print "Would you like to play again? (y/n): “

playAgain = STDIN.gets #Collect the player's response

playAgain.chop! #Remove any extra characters appended to the string

break if playAgain == "n"

end

#Call upon the Quiz class's determine_credits method to thank

#the player for taking the quiz and to display game information

SQ.display_credits

end

135

136

25-06-2022

Ruby Programming 137

Running Your New Ruby Script Game

• Save your Ruby script.
• Access the command prompt and navigate to

the folder where you saved the script.
• Enter the following command and press the

Enter key.
ruby NumberGuessing.rb

137

138

25-06-2022

139

140

25-06-2022

141

142

25-06-2022

Extending Ruby:

• Ruby Objects in C
• the Jukebox extension
• Memory allocation
• Ruby Type System
• Embedding Ruby to Other Languages
• Embedding a Ruby Interperter

1

2

25-06-2022

Ruby Objects in C

• The first thing we need to look at is how to
represent and access Ruby datatypes from
with in C

• Everything inRuby is an object, and all
variables are references to objects.

• In C, this means that the type of all Ruby
variables is VALUE, which is either a pointer to
a Ruby object or an immediate value (such as
Fixnum).

• Ruby object is an allocated structure in
memory that contains a table of instance
variables and information about the class.

• The class itself is another object (an allocated
structure in memory) that contains a table of
the methods defined for that class. On this
foundation hangs all of Ruby.

3

4

25-06-2022

VALUE as a Pointer
• When VALUE is a pointer, it is a pointer to one

of the defined Ruby object structures
• The structures for each built-in class are

defined in “ruby.h” and are named
RClassname, as in RString and Rarray etc..

• The macro TYPE(obj) will return a constant
representing the C type of the given object:
T_OBJECT, T_STRING, and so on.

• you can use the macro Check_Type, which will
raise a TypeError exception if value is not of
the expected type (which is one of the
constantsT_STRING, T_FLOAT, and so on)

• Check_Type(VALUE value, int type)
. The class objects for the built-in classes are

stored in C global variables named
rb_cClassname (for instance, rb_cObject);
modules are named rb_mModulename.

5

6

25-06-2022

Example:

• VALUE str, arr;
• RSTRING(str)->len length of the Ruby string
• RARRAY(arr)->len length of the Ruby array

VALUE as an Immediate Object
• immediate values are not pointers: Fixnum,

Symbol, true, false, and nil are stored directly
in VALUE.

• When VALUE is used as a pointer to a specific
Ruby structure, it is guaranteed always to have
an LSB of zero; the other immediate values
also have LSBs of zero. Thus, a simple bit test
can tell you whether or not you have a
Fixnum.

7

8

25-06-2022

9

10

25-06-2022

Writing Ruby in C

class Test
def initialize

@arr = Array.new
end
def add(anObject)

@arr.push(anObject)
end

end

11

12

mailto:@arr.push(anObject)

25-06-2022

• Init_Test. Every class or module defines a C global
function named Init_Name.

• add and initialize as two instance methods for
class Test. The calls to rb_define_method
establish a binding between the Ruby method
name and the C function that will implement it,
so a call to the add method in Ruby will call the C
function t_add with one argument.

Memory allocation
• sometimes need to allocate memory in an

extension that won't be used for object storage
• In order to work correctly with the garbage

collector, you should use the following memory
allocation routines.

• These routines do a little bit more work than the
standard malloc.

• For example, if ALLOC_N determines that it
cannot allocate the desired amount of memory, it
will invoke the garbage collector to try to reclaim
some space.

13

14

25-06-2022

the Jukebox extension

• A cabinet containing an automatic
record player; records are played by inserting
a coin

• C code with Ruby and sharing data and
behavior between the two worlds

• We’ve got the vendor’s library that controls
the audio CD jukebox units, and we’re ready
to wire it into Ruby.

• The vendor’s header file looks like this.

15

16

25-06-2022

Wrapping C Structures

API: C Data Type Wrapping

17

18

25-06-2022

• The vendor library passes the information around
between its various functions in a CDJukebox
structure.

• This structure represents the state of the jukebox
and therefore is a good candidate for wrapping
within our Ruby class.

• You create new instances of this structure by
calling the library’s CDPlayerNew method.

• You’d then want to wrap that created structure
inside a new CDPlayer Ruby object

19

20

25-06-2022

Allocation Functions

You then need to register your allocation function in your class’s
initialization code

The allocation function creates an empty, uninitialized object, and we’ll need
to fill in specific values.
In the case of the CD player, the constructor is called with the unit number of
the player to be associated with this object.

21

22

25-06-2022

• JukeBoxProgram

Creating an Extension

• Having written the source code for an
extension

• we now need to compile it so Ruby can use it.
We can either do this as a shared object,
which is dynamically loaded at runtime, or
statically link the extension into the main Ruby
interpreter itself.

23

24

25-06-2022

• 1. Create the C source code file(s) in a given
directory.

• 2. Optionally create any supporting Ruby files in a
lib subdirectory.

• 3. Create extconf.rb.
• 4. Run extconf.rb to create a Makefile for the C

files in this directory.
• 5. Run make.
• 6. Run make install.

25

26

25-06-2022

Building Our Extension

Running Our Extension

27

28

25-06-2022

Ruby Type System

• In Ruby, we rely less on the type (or class) of
an object and more on its capabilities.

• This is called duck typing.
• The following code implements the

Kernel.exec method.

29

30

25-06-2022

• The first parameter to this method may be a
string or an array containing two strings.

• However, the code doesn’t explicitly check the
type of the argument

• Instead, it first calls rb_check_array_type,
passing in the argument.

• What does this method do?

31

32

25-06-2022

• Now we’re getting somewhere.
• If the object is the correct type (T_ARRAY in our

example), then the original object is returned.
Otherwise, we don’t give up quite yet.

• Instead we call our original object and ask if it can
represent itself as an array (we call its to_ary
method).

• If it can, we’re happy and continue.
• The code is saying “I don’t need an Array, I just

need something that can be represented as an
array.”

• This means that Kernel.exec will accept as an
array any parameter that implements a to_ary
method.

Embedding a Ruby Interperter

• In addition to extending Ruby by adding C
code, you can also turn the problem around
and embed Ruby itself within your application.

• We have two ways to do this
• First one is to let the interpreter take control

by calling ruby_run.
• This is the easiest approach.
• but it has one significant drawback—the

interpreter never returns from a ruby_run call.

33

34

25-06-2022

Example:

To initialize the Ruby interpreter, you need to call
ruby_init().

• The second way of embedding Ruby allows
Ruby code and your C code to engage in more
of a dialogue: the C code calls some Ruby
code, and the Ruby code responds.

• we do this by initializing the interpreter as
normal.

• Then, rather than entering the interpreter’s
main loop, you instead invoke specific
methods in your Ruby code.

• When these methods return, your C code gets
control back.

35

36

25-06-2022

• There’s a wrinkle, though. If the Ruby code raises
an exception and it isn’t caught, your C program
will terminate.

• To overcome this, you need to do what the
interpreter does and protect all calls that could
raise an exception. eeeeeeeee

• This can get messy. The rb_protect method call
wraps the call to another C function.

• That second function should invoke our Ruby
method.

• However, the method wrapped by rb_protect is
defined to take just a single parameter. To pass
more involves some ugly C casting.

37

38

25-06-2022

• the Ruby interpreter was not originally written
with embedding in mind.

• Probably the biggest problem is that it
maintains state in global variables, so it isn’t
thread-safe.

• we can embed Ruby—just one interpreter per
process.

39

40

25-06-2022

Embedding Ruby to Other Languages

41

42

25-06-2022

Perl Unit-3

• Introduction to PERL and Scripting
• Scripts and Programs
• Origin of Scripting
• Scripting Today
• *** Characteristics of Scripting Languages
• Uses for Scripting Languages
• Web Scripting and the universe of Scripting

Languages.

• PERL- Names and Values,
• Variables,
• Scalar Expressions,
• Control Structures,
• arrays, list, hashes, strings,
• pattern and regular expressions, subroutines.

1

2

25-06-2022

Introduction to PERL

Perl, release in 1987, is a high-level
programming language written by Larry Wall.
Perl's process, file, and text manipulation
facilities make it particularly well-suited for
tasks system utilities, system management
tasks, database access, networking. These
strengths make it especially popular with
system administrators.

Perl Features
• It has a very simple Object-oriented programming

syntax.
• It is easily extendible as it supports 25,000 open source

modules.
• It supports Unicode.
• It includes powerful tools to process text to make it

compatible with mark-up languages like HTML, XML.
• It supports third party database including Oracle, MySQL

and many others.
• It is embeddable in other systems such as web servers

and database servers.
•

3

4

25-06-2022

• It is open source software licensed under GNU.
• Many frameworks are written in Perl.
• It can handle encrypted web data including e-

commerce transactions.
• It is a cross platform language.
• It offers a regular expression engine which is able

to transform any type of text.

Scripting:

• Scripting languages are used from the ground
up, employing a team of professional
programmers, starting from well-defined
specifications, and meeting for is qualitatively
different from conventional programming
languages like C++ and Ada address the
problem of developing large applications
specified performance constraints.

5

6

25-06-2022

• Scripting languages, on other hand, address different
problems:•
➢Building applications from ‘off the shelf’

components•
➢Controlling applications that have a programmable

interface•
➢Writing programs where speed of development is

more important than run-time efficiency.
•

• The most important difference is that scripting
languages incorporate features that enhance
the productivity of the user in one way or
another, making them accessible to people
who would not normally describe themselves
as programmers, their primary employment
being in some other capacity.

• Scripting languages make programmers of us
all, to some extent.

7

8

25-06-2022

Origin of scripting

• The use of the word ‘script’ in a computing context
dates back to the early 1970s,when the originators of
the UNIX operating system create the term ‘shell script’
for sequence of commands that were to be read from a
file and follow in sequence as if they had been typed in
at the keyword.

• e.g. an ‘AWKscript’, a ‘perl script’ etc.. the name ‘script
‘ being used for a text file that was intended to be
executed directly rather than being compiled to a
different form of file prior to execution.

• Note that if we regard a scripts as a sequence
of commands to control an application or a
device, a configuration file such as a UNIX
‘make file’ could be regard as a script.

• However, scripts only become interesting
when they have the added value that comes
from using programming concepts such as
loops and branches.

9

10

25-06-2022

Scripting today:

• A new style of programming which allows
applications to be developed much faster than
traditional methods allow,and maks it possible
for applications to evolve rapidly to meet
changing user requirements.

• Using a scripting language to
‘manipulate,customize and automate the
facilities of an existing system’,as the
ECMAScript definition puts

• Here the script is used to control an
application that privides a programmable
interface:this may be an API,though more
commonly the application is construted from
a collection of objects whose properties and
methods are exposed to the scripting
language.Example: use of Visual Basic for
applications to control the applications in the
Microsoft Office Suite.

11

12

25-06-2022

• Using a scripting language with its rich
funcationaliy and ease of use as an alternate
to a conventional language for general
programming tasks ,particularly system
programming and administration.

• Examples: are UNIX system adminstrators
have for a long time used scripting languages
for system maintenace tasks,and
administrators of WINDOWS NT systems are
adopting a scripting language ,PERL for their
work.

Characteristics of scripting languages:

• Integrated compile and run:

SL’s are usually characterized as interpreted
languages, but this is just an over
simplification.They operate on an immediate
execution , without need to issue separate
command to compile the program and then to
run the resulting object file, and without the
need to link extensive libraries into he object
code. This is done automatically.

13

14

25-06-2022

Characteristics of scripting languages:
cont..

• Low overheads and ease of use:
1.variables can be declared by use
2.the number of different data types is usually

limited
3.everything is string by context it will be

converted as number(vice versa)
4.number of data strucures is limited(arrays)

• Enhanced functionality:
• SL’s usually have enhanced functionality in

some areas.
• For example ,most languages provide string

manipulation based on the u se of regular
expressions, while other languages provide
easy access to low-level operating system
facilities , or to the API , or object exported by
an application.

Characteristics of scripting languages:
cont..

15

16

25-06-2022

• Efficiency is not an issue:
• Scripting languages typically use abstraction, a

form of information hiding, to spare users the
details of internal variable types, data storage,
and memory management.

• Scripts are often created or modified by the
person executing them, but they are also
often distributed, such as when large portions
of games are written in a scripting language.

Characteristics of scripting languages:
cont..

Users For Scripting Lanuages:

• Users are classified into two types
1. Modern applications
2. Traditional users

Modern applications:
1.1Visual scripting:

• A collection of visual objects is used to construct a
graphical interface.

17

18

25-06-2022

1.2 Scripting components:

• In scripting languages we use the idea to
control the scriptable objects belonging to
scripting architecture. Microsoft's visual basic
and excel are the first applications that used
the concept of scriptable objects.

Applications of traditional scripting
languages are:

• 1. system administration,
• 2. experimental programming,
• 3. controlling applications.
Application areas :
Four main usage areas for scripting languages:
• 1. Command scripting languages
• 2.Application scripting languages
• 3.Markup language
• 4. Universal scripting languages

19

20

25-06-2022

Web scripting:

• Web scripting divides into three areas
1. Processing forms
2. Creating pages with enhanced visual effects

and user interaction
3. Generating pages ’on the fly’ from material

held in database.

Names and Values in Perl:
• Like any other programming language, Perl manipulates

variables which have a name (or identifier) and a value:
• a value is assigned to a variable by an assignment

statement of the form
• NAME=VALUE
• A singular name is associated with a variable that holds a

single item of data (a scalar value), a plural name is
associated with a variable that holds a collection of data
items (an array or hash).

• A notable characteristic of Perl is that variable names start
with a special character that denotes the kind of thing
that the name stands for - scalar data ($), array (@), hash
(%), subroutine (&) etc.

21

22

25-06-2022

Perl Variablels

• A variable is a place to store values. They can be
manipulated throughout the program. When variables
are created they reserve some memory space.

• There are three types of variables:
Scalar defined by $
Arrays defined by @
Hashes defined by %

• Variables can be declared using my, our, use vars, state
and $person::name (explicit package name). Although,
they all have different meanings.

• The $a and $b are special variables used in
perl sort function. There is no need to declare
these two variables. So it is recommended not
to use these two variables except in
connection to sort.

• If you are using use strict statement in a
program, then you have to declare your
variable before using it. It is mandatory.

• Otherwise you'll get an error.
• Example Program:
• ----
• ----

23

24

25-06-2022

• String Scalars
• $p=“mgit”
• Print “$p”
• Operations:
• Examples:1,2,3
• Mulit line string:

print <<mgit;
This is
multiline string
mgit

25

26

25-06-2022

Special Literals
• So far you must have a feeling about string scalars

and its concatenation and interpolation opration.
So let me tell you about three special literals
__FILE__, __LINE__, and __PACKAGE__ represent
the current filename, line number, and package
name at that point in your program.

• #!/usr/bin/perl
• print "File name ". __FILE__ . "\n";
• print "Line Number " . __LINE__ ."\n";
• print "Package " . __PACKAGE__ ."\n";

PERL CONTROL
STRUCTURE/STATEMENTS

• The if statement in Perl language is used to
perform operation on the basis of condition.
By using if-else statement, you can perform
operation either condition is true or false. Perl
supports various types of if statements

• If
• If-else
• If else-if and switch with examples
• Examples:

27

28

25-06-2022

Switch syntax:
• given(expression)
• {

– when (value1)
• {//code to be executed;}

– when (value2)
• {//code to be executed;}

– when (value3)
• {//code to be executed;}

– default
• {//code to be executed if all the cases are not matched.}

• }

String operations

29

30

25-06-2022

31

32

25-06-2022

Print “ ***\“MGIT\”***”

33

34

25-06-2022

Arrays & Lists

35

36

25-06-2022

37

38

25-06-2022

39

40

25-06-2022

41

42

25-06-2022

43

44

25-06-2022

hashes

• Some times called associative arrays, dictionaries,
or maps; hashes are one of the data structures
available in Perl.

• A hash is an un-ordered group of key-value pairs.
The keys are unique strings. The values are scalar
values. Each value can be either a number, a
string, or a reference.

• Hashes, like other Perl variables, are declared
using the my keyword. The variable name is
preceded by the percentage (%) sign.

45

46

25-06-2022

• Hah values can be any scalar ,just like an array
,but hash keys can only be strings.

H a s h e s

� An associative ar r ay ideal for handling attr ibute/value pair.

� Lists and ar rays are ordered and accessed by index ,hashes
are ordered and accessed by specified key.

� Represented using “%” symbol.

� Fir st element in each row is called a Key and the second
element is a Value associated with t h at key.

� E xa mple : %coins = (“quar ter”,25, “dime”,5); or
%coins = (quar ter => 25 , dime => 5);

Key Value

48

47

48

25-06-2022

H a s h e s (Cont d. .)

49

� Ha h values can be any scalar ,just like a n ar r ay ,but hash
keys can only be str ings.

Example: Printing the hash.
#!usr/local/bin/perl
%hash1 = (one => 1 ,two => 2 ,three =>3 ,four =>4);

#we cant use print “%hash1”;print %hash1;
print “@{[hash1]} \n”;
@temp = %hash1;
Print “@temp”;

This program displays:
three3one1two2four4
three 3 one 1 two 2 four 4
three 3 one 1 two 2 four 4

� The pr int order determined by how the Perl chooses to store
internally.

50

� Hash can have only scalars as values.

� “{ }” are used to access individual elements of the hash.

Example:
#!usr/local/bin/perl
%hash1 = (one => 1 ,two => 2 ,three =>3 ,four =>4);

#single key, use scalar
#multiple key ,use array

$ele = $hash1(‘three’);
@mul_ele = @hash1(‘four’ ,’one’);
print “single element =$ele “;
print “multiple elements =@mul_ele”;

This program displays:
single element =3
mult iple elements = 4 1

49

50

25-06-2022

H a s he s (Contd.)

51

� “keys” function can be used to find the no. of keys and list of
entr ies in a hash.

� “values ” function can be used to find the no. of values list of
values in a hash.

Example:
#!usr/local/bin/perl
%hash1 = (one => 1 ,two => 2 ,three =>3 ,four =>4);

#single key, use scalar
#multiple key ,use array

$ele = $hash1(‘three’);
@mul_ele = @hash1(‘four’ ,’one’);
print “single element =$ele “;
print “multiple elements =@mul_ele”;

This program displays:
single element =3
mult iple elements = 4 1

Ma n i pu l a t i n g Has hs

52

�

�

To add or change the value key we can do like this
$hash1{ ‘three’ } = ‘PERL’ .
It will overwr ite th e previous va lue if a lrea dy existing.
Otherwise it is added as a new key.

� “undef “ function is used to remove the value of the key, but
key will still exists.

Example: undef $hash1{‘ two’} ;
� “delete” function is used to remove the value as well as key

from the hash.
Example :delete $hash1 {‘four ‘};

51

52

25-06-2022

Perl Regular Expressions

• A powerful, flexible, and efficient text
processing. Regular expressions like a mini
programming language.

• You can use Regular expressions to verify
whether input match with text pattern with
in a larger body of text, to replace text
matching the pattern with other text.

Danairat
T.

98

Regular Expressions
• Match Operator
• – Match Operator Modifiers
• • Substitution Operator
• – Substitution Operator Modifiers
• • Translation Operator
• – Translation Operator Modifiers
• • Regular Expression Elements
• – Metacharacters
• – Character Classes
• – Anchors
• – Pattern Quantifiers
• – Pattern Match Variables
• – Backreferencing

53

54

25-06-2022

Match Operator

• The match operator represents by m//
• We can use the match operator to determine text or string whether match to

provided pattern. The basic form of the operator is
m/PATTERN/;

• The =~ is used as regular expression match between variable and the pattern.
• The !~ is used as regular expression NOT match between variable and the pattern.

exit(0);

MatchEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

my $myString = "Hello Everyone";
if ($myString =~ m/one/) {

print "match.";
}

Results:-
match.

Danairat
T.

100

Match Operator

• We can omit the m to be only //

exit(0);

MatchOmitTheMEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

my $myString = "Hello Everyone";
if ($myString =~ /one/) {

print "match.";
}

Results:-
match.

Danairat
T.

101

55

56

25-06-2022

Match Operator

• The m sometime make the code more clear

if ($myString =~ m(/usr/local/lib)) {
print "match with m\n";

}

exit(0);

MatchWithMEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

my $myString ="/usr/local/lib";
if ($myString =~ /\/usr\/local\/lib/) {

print "match without m\n";
}

Danairat
T.

102

Results:-
match without m
match with m

Match Operator Modifiers

Danairat
T.

103

Modifier Meaning

g Match globally, i.e., find all occurrences.

i Do case-insensitive pattern matching.
m Treat string as multiple lines.

o

Evaluates the expression only once. Use this
modifier when the pattern is a variable running in
the loop and may be changed during running.

s Treat string as single line.

x
Allows you to use white space in the
expression for clarity.

57

58

25-06-2022

Match Operator Modifiers
• Normally, the match returns the first valid match for a regular

expression, but with the /g modifier in effect, all possible
matches for the expression are returned in a list

my $myString = "Hello Everyone";
foreach my $myMatch ($myString =~ /e/g) {

print "match.\n";
}
exit(0);

GlobalMatchEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

Results:-
match.
match.
match.

Danairat
T.

104

Match Operator Modifiers
• The /i is used for match case insensitive.

my $myString = "Hello Everyone";
foreach my $myMatch ($myString =~ /e/ig) {

print "match.\n";
}
exit(0);

CaseInsensitiveGlobalMatchEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

Results:-
match.
match.
match.
match.

Danairat
T.

105

59

60

25-06-2022

Substitution Operator

• The Substitution operator represents by s///
• The Substitution operator is really just an extension of the match operator that

allows you to replace the text matched with some new text. The basic form of the
operator is

s/PATTERN/REPLACEMENT/;

my $myString = "Hello Everyone";
my $myCount = $myString =~ s/Hello/Hi/;
print "$myString \n";
print "$myCount \n";

exit(0);

SubstituteEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

Results:-
Hi Everyone
1

Danairat
T.

107

Substitution Operator

• Language supported in the Substitution operator

print "$myString \n";
print "$myCount \n";
exit(0);

SubstituteEx02.pl

#!/usr/bin/perl
use strict;
use warnings;

my $myString = "Hello Everyone";
my $myCount = $myString =~ s/Hello/สวสั ด/◌ี
;

Results:-
สวส ั ดี Everyone
1

Danairat
T.

108

61

62

25-06-2022

Substitution Operator Modifiers

Danairat
T.

109

Modifier Meaning

g Match globally, i.e., find all occurrences.

i Do case-insensitive pattern matching.
m Treat string as multiple lines.

o

Evaluates the expression only once. Use this modifier
when the pattern is a variable running in the loop and
may be changed during running.

s Treat string as single line.

x
Allows you to use white space in the
expression for clarity.

e

Evaluates the replacement as if it were a Perl
statement, and uses its return value as the replacement
text

Substitution Operator Modifiers
• The Substitution operator with \L, \u, \i, \g can be

used to convert the character case

#!/usr/bin/perl
use strict;
use warnings;

my $myString = "hELlo eveRyoNe";

the \w is match any alphanumeric
the + is match one or more than one
my $myCount = $myString =~ s/(\w+)/\u\L$1/ig;
print "$myString \n";
print "$myCount \n";

exit(0);

ChangeCaseEx01.pl

Results:-
Hello Everyone
2

Danairat
T.

110

63

64

25-06-2022

Substitution Operator Modifiers
• Using substitute with /m to match multiline text

MultiLinesSubstituteEx01.pl

#!/usr/bin/perl
use strict;
use warnings;

my $myString =<<END_OF_LINES;
Hello
Everyone
Everyone
END_OF_LINES

$myString =~ s/^every/Any/igm;
print $myString . "\n";

exit(0);

Results:-
Hello
Anyone
Anyone

Danairat
T.

111

Metacharacters

Danairat
T.

118

Symbol Atomic Meaning

\ Varies
Treats the following character as
a real character

^ No True at beginning of string (or line, if /m is used)
$ No True at end of string (or line, if /m is used)
| No Alternation match.

. Yes
Match one character except
the newline character.

(...) Yes Grouping (treat as a one unit).

[...] Yes

Looks for a set and/or range of characters, defined as a
single character class, The [...] only
represents a single character.

65

66

25-06-2022

Metacharacters
• The \ to match any escape sequence character

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /\t/) {

print "matched.";
}
exit(0);

UsingBackSlashEx03.pl

Results:-
<Please enter the [tab] to match
with pattern>

Danairat
T.

119

Metacharacters
• The ^ to match the beginning of string

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /^The/) {

print "matched.";
}
exit(0);

MatchBeginningEx03.pl

Results:-
<Please enter the word start
with “the“ to match with
pattern>

Danairat
T.

120

67

68

25-06-2022

Metacharacters
• The $ to match the ending of string

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /\.$/) {

print "matched.";
}
exit(0);

MatchEndingEx03.pl

Results:-
<Please enter the word end
with “.“ to match with pattern>

Danairat
T.

121

Metacharacters
• The | to perform alternation match.

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /apple|orange/) {

print "matched.";
}
exit(0);

MatchSelectionEx03.pl

Results:-
<Please enter “Apple” or
“Orange” to match with pattern>

Danairat
T.

122

69

70

25-06-2022

Metacharacters
• The period . to match any single character

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /b.ll/) {

print "matched.";
}
exit(0);

UsingDotEx03.pl

Results:-
<Please enter the bill or bull or
ball to match with pattern>

Danairat
T.

123

Metacharacters
• The period . to match any single character

#!/usr/bin/perl
use strict; use warnings;

print "Please enter word: ";
my $myWord = <STDIN>;
chomp($myWord);
if ($myWord =~ /b.ll/) {

print "matched.";
}
exit(0);

UsingDotEx03.pl

Results:-
<Please enter the bill or bull or
ball to match with pattern>

Danairat
T.

124

71

72

25-06-2022

Character Classes

Danairat
T.

125

Code Matches
\d A digit, same as [0-9]
\D A nondigit, same as [^0-9]

\w
A word character (alphanumeric), same as
[a-zA-Z_0-9]

\W A non-word character, [^a-zA-Z_0-9]

\s A whitespace character, same as [\t\n\r\f]
\S A non-whitespace character, [^ \t\n\r\f]

\C Match a character (byte)
\pP Match P-named (Unicode) property
\PP Match non-P
\X Match extended unicode sequence

Character
Classes

Danairat
T.

126

Code Matches

\l Lowercase until next character

\u Uppercase until next character

\L Lowercase until \E

\U Uppercase until \E

\Q Disable pattern metacharacters until \E

\E End case modification

73

74

25-06-2022

Anchor
s

Danairat
T.

127

Anchors don't match any characters; they
match places within a string.

Assertion Meaning

^
Matches at the beginning of the string (or line, if /m is
used)

$ Matches at the end of the string (or line, if /m is used)
\b Matches at word boundary (between \w and \W)
\B Matches a non-word boundary

\A Matches at the beginning of the string

\Z Matches at the end of the string or before a newline

\z Matches only at the end of the string

\G Matches where previous m//g left off (only works with /g modifier).

Pattern
Quantifiers

Danairat
T.

128

• Pattern Quantifiers are used to specify the number of
instances that can match.

the quantifiers have a notation that allows for minimal matching. This
notation uses a question mark immediately following the quantifier to force
Perl to look for the earliest available match.

Maximal Minimal Allowed range

{n,m} {n,m}? Must occur at least n times but no more than m times

{n,} {n,}? Must occur at least n times

{n} {n}? Must match exactly n times

* *? 0 or more times (same as {0,})

+ +? 1 or more times (same as {1,})

? ?? 0 or 1 time (same as {0,1})

75

76

25-06-2022

Character Classes
• Example

#!/usr/bin/perl
use strict;
use warnings;

my $myString ="Hello 111Every2343one";

if ($myString =~ /^(\w+)(\s+)(\d+)(\w+)(\d+)(\w+)$/) {
print "match." . "\n";

}
exit(0);

MatchChrClassEx01.pl

Results:-
<Please enter the bill or bull or
ball to match with pattern>

Danairat
T.

129

• Example

Character Classes

• #!/usr/bin/perl use
strict;
• use warnings;

• my $myString ="Hello 111Every2343one";

• if ($myString =~
/^(\w+)(\s+)(\d{1,3})(\w+)(\d{1,4})(\w+)$/) {
print "match." . "\n";

}
exit(0);

MatchChrClassEx02.pl

Results:-
<Please enter the bill or bull or
ball to match with pattern>

Danairat
T.

130

77

78

25-06-2022

subroutine
• A Perl subroutine or function is a group of statements that together

performs a task.
• Advantages of subroutines:
• 1) Code re-usability

2) Improves code readability
• Define and Call a Subroutine
• The general form of a subroutine definition in Perl programming

language is as follows –
• sub subroutine_name
• {
• body of the subroutine
• }
• The way of calling that Perl subroutine is as follows –

subroutine_name(list of arguments)

Passing Arguments to a Subroutine

• We can pass various arguments to a subroutine
like you do in any other programming language
and they can be accessed inside the function
using the special array @_. Thus the first
argument to the function is in [0], these
concision_[1], and so on.

• we can pass arrays and hashes as arguments like
any scalar but passing more than one array or
hash normally causes them to lose their separate
identities.

79

80

25-06-2022

• Examples:
• Function fn(arguments)
• {
• ---
• ---
• }

Example1:

• sub fun1
• {
• print "type1\n";
• }
• fun1;
• fun1();
• &fun1;

81

82

25-06-2022

Example2
• #!/usr/bin/perl

• # defining subroutine
• sub withargs {
• printf "@_\n";
• return;
• }
• #calling subroutine
• withargs("mgit", "cse", "3", "perl subroutine");

Strings:lc, uc, length

• There are a number of simple functions such
as lc and uc to return the lower case and
upper case versions of the original string
respectively. Then there is length to return the
number of characters in the given string.
use strict;
use warnings;
use 5.010;
my $str = 'HeLlo';
print lc $str; # hello

print uc $str; # HELLO
print length $str; # 5

83

84

25-06-2022

index

• Then there is the index function. This function
will get two strings and return the location of
the second string within the first string.

use strict;
use warnings;
use 5.010;

my $str = "The black cat climbed the green tree";

print index $str, ‘black'; #4
print index $str, 'dog'; # -1
print index $str, "The"; # 0
print index $str, “Cat"; # -1

substr
• It is basically the opposite of index(). While

index() will tell you where is a given string,
substr will give you the substring at a given
locations. Normally substr gets 3 parameters.
The first one is the string. The second is a 0-
based location, also called the offset, and the
third is the length of the substring we would
like to get. use strict;

use warnings;
use 5.010;

my $str = "The black cat climbed the green tree";

print substr $str, 4, 5;

85

86

25-06-2022

Replacing part of a string

• The last example is a bit funky. So far in every
case substr returned the substring and left the
original string intact. In this example, the return
value of substr will still behave the same way, but
substr will also change the content of the original
string!

• The return value of substr() is always determined
by the first 3 parameters, but in this case substr
has a 4th parameter. That is a string that will
replace the selected substring in the original
string.

my $str = "The black cat climbed the green tree";
my $z = substr $str, 14, 7, "jumped from";
print $z; # climbed
print $str;

87

88

25-06-2022

String operations

89

90

25-06-2022

Advanced perl
Finer points of looping

pack and unpack,
filesystem, eval,
data structures,
packages, modules, objects,
interfacing to the operating system,
Creating Internet ware applications,
Dirty Hands Internet Programming,
security Isses.

Finer points of looping

 Loop statements are use to repeat the block of
statements .

 while loop Repeats a statement or group
of statements while a given
condition is true. It tests the
condition before executing the
loop body.

1

2

25-06-2022

17a)
sub multable
{

$n=@_[0];
print("table no:
".$n."\n");
my $i=1;
my $re=0;
while($i<=10)
{

$re=$i*$n;
print

"$i*$n=$re\n";

$i++;
}
print "------------\n";

}

$i=1;
while($i<=10)
{

multable($i);
$i++;

}

 until loop Repeats a statement or group
of statements until a given
condition becomes true. It tests
the condition before executing
the loop body.

Example:
use warnings;
use strict;
my $counter = 5;
until($counter == 0)
{
print("$counter \n"); $counter--;
}

3

4

25-06-2022

 for loop Executes a sequence of
statements multiple times and
abbreviates the code that
manages the loop variable.

Example:
for ($firstVar = 0; $firstVar < 100;
$firstVar++)
{
print("inside: firstVar = $firstVar\n");
}

 foreach loop The foreach loop iterates over a
normal list value and sets the

variable VAR to be each
element of the list in turn

Example:
foreach my $i (0..9)
{
print "$i\n";
}

5

6

25-06-2022

 do...while loop Like a while statement,
except that it tests the

condition at the end of the
loop body

Example:
$i = 1;
do{

printf "$i\n";
$i++;

}while($i <= 10);

next, last, goto,redo statements

Perl next Statement
 The Perl next statement is like continue statement

in C.
Perl goto Statement
 The Perl goto statement is the jump statement. It is

used to transfer control by jumping to other label
Perl last Statement
 The last statement in Perl is like break statement

in C. It is used inside a loop to exit the loop
immediately.

7

8

25-06-2022

Perl redo Statement
 The Perl redo statement

restarts the current loop
without evaluation of
the control statement.

 Example:
 $a = 5;
 while($a < 150){
 if($a == 40){
 $a = $a + 10;

 redo;
 }
 print "a = $a\n";
 }continue{
 $a = $a * 2;
 }

File Handling

10

� A filehandle is nothing more t h an a nickname for the files
you intend to use in your PERL scripts and programs.

� Filehandles are a connection between our program and a n
external data source

� Filehandles in Perl are a distinct data type.

� STDIN or st a ndard inpu t rep resen ts t he defa ult input
filehandle and usually connected to the keyboard.

� STDOUT or Standard output represents the default output
filehandle and usually connected to the console
device(screen)

9

10

25-06-2022

F i l e H a n dl i n g (Con t d. .)

11

� STDE RR or Stan dard er r or is the defa u lt ou t pu t er r or
filehandle and usually connected to screen.

Ope n in g a fi le

� To open a file ,use the “open “ function.

� Syntax : open FILEHANDLE ,MODE,LIST
open FILEHANDLE ,EXPR
open FILEHANDLE

� The “open “ function takes a filename and creates the handle
for it.

F i l e H a n dl i n g (Con t d . .)

12

Opening a fi le (Contd. .)

� The open function returns a true(nonzero) value if successful
otherwise it r eturns undefined value.

� The fileha ndle will cr eate in eith er ca se bu t if the ca ll to
“open” fails, the filehandle will be unopened and unassigned.

� If the “open” fails the reason is stored in special
variable “$!” ,which produces a message in string
context.

� File h a ndling is most er r or p rone ,so use “open a nd “die”
together.

Ex: open (HANDLE, $filename) or die "Can't open $filename:
$!\n";

11

12

25-06-2022

File Handling (Contd..)

13

Opening a fi le (Contd. .)
� “open” under stands total six modes.

M O D E Symbol Description

Read < Open file handle for read access only.
Ex :open FILHND “<$file”;
This is the default mode and so the < prefix is
usually optional

Write > Open the file for write access only.
Ex :open FILHND “>$file”;
If the file doesn’t exist then it is created and
opened.
If the file does exist then it overwritethe existing
contents

File Handling (Contd..)

14

Opening a fi le (Contd. .)

M O D E Symbol Description

Append >> Open the file for write access only.
Ex :open FILHND “>>$file”;
If the file doesn’t exist then it is created and
opened.
If the does exists then it appends that file.

Read-
update

+< Open the file for read and write access.
Ex :open FILHND “+<$file”;
If the file does not exist then the open fails.
If the file does exist then it overwrite(contents are
preserved for reading) the existing contents.

13

14

25-06-2022

File Handling (Contd..)

15

Opening a fi le (Contd. .)
M O D E Symbol Description

Write-
update

>+ Open the file for read and write access.
Ex :open FILHND “>+$file”;
If the file doesn’t exist then it is created.
If the file does exist then it istruncated and its
existing contents are lost.(usually used for
opening a newfile)

Append-
update

>>+ Open the file for read and write access only.
Ex :open FILHND “>>+$file”;
If the file doesn’t exist then it is created and
opened.
If the file does exist then both read and write
commence from the end of the file.

Reading Lines
Example :
exam.txt :: winners dont do different things.

winners do things differently.. success is not a
destination.

Perl Script:
#!usr/local/bin/perl
open FILE, "exam.txt" or die $!;
$lineno;
while(<FILE>){ print $lineno++," \ t "; print "$_"; }

This program displays:
1 winners dont do different things.
2 winners do things differently.
3 success is not a destination.

File Handling (Contd..)

16

15

16

25-06-2022

File read

print "enter filename to read";
$file=<STDIN>;
chomp($file);
open(DATA,$file) or die $!;
@lines=<DATA>;
print @lines;
close(DATA);

File write:

 #!/usr/bin/perl
 use warnings;
 use strict;

 my $str = <<END;
 This is the sample text
 that is used to write to file
 END

 my $filename = 'mgit.txt';

 open(FH, '>', $filename) or die $!;

 print FH $str;

 close(FH);

 print "Writing to file
successfully!\n";

17

18

25-06-2022

File write 2

 # Opening file Hello.txt in
write mode

 open (FH, ">", "Hello.txt");

 # Getting the string to be
written

 # to the file from the user
 print "Enter the content to be

added\n ";
 while(1)
 {
 $a = <STDIN>;
 #chomp($a);
 $b="quit\n";
 if($a eq $b)

 {
 print "hi";
 last;
 }
 # Writing to the file
 print FH $a;
 }
 # Closing the file
 close(FH) or "Couldn't close

the file";

File copy

 #!/usr/bin/perl
 use warnings;
 use strict;
 print "enter the file to copy\n";
 my $src = <STDIN>;
 chomp($src);
 print "enter new file name\n";
 my $des = <STDIN>;
 chomp($des);

 # open source file for reading
 open(SRC,'<',$src) or die $!;

 # open destination file for writing
 open(DES,'>',$des) or die $!;

 print("copying content from $src to
$des\n");

 while(my $lines=<SRC>){
 print DES $lines;
 }

 # always close the filehandles
 close(SRC);
 close(DES);

 print "File content copied
successfully!\n";

19

20

25-06-2022

Seek and tell methods

1. #!/usr/bin/perl
2. use warnings;
3. use strict;
4. #kmy $data="";
5. print "enter the file\n";
6. my $src = <STDIN>;
7. chomp($src);
8. open(SRC,'<',$src) or

die $!;

9. seek(SRC,10,1); -
ve,0,+ve

10. my $pos=tell(SRC);
11. print $pos;
12. my $data=<SRC>;
13. print $data;
14. my $pos=tell(SRC);
15. print $pos;

prin t , prin t f, a n d w rit e F u n ct ion s

22

� “print” function writes to the file specified, or to the cur rent
default file if no file is specified.

Ex: pr int ("Hello, there!\n");
pr int OUTFILE ("Hello, there!\n");

� “write” function uses a print format to send formatted
output to the file that is specified or to the current default
file.

Ex : write (CD_REPORT);

21

22

25-06-2022

D ire ct orie s H a n dl in g

23

� “print” function writes to the file specified, or to the cur rent
default file if no file is specified.

Ex: pr int ("Hello, there!\n");
pr int OUTFILE ("Hello, there!\n");

� “write” function uses a print format to send formatted
output to the file that is specified or to the current default
file.

Ex : write (CD_REPORT);

Perl command line arguments

 Perl command line arguments stored in the special
array called @ARGV. The array @ARGV contains the
command-line arguments intended for the
script. $#ARGV is generally the number of
arguments minus one

 Use the $ARGV[n] to display argument.
 We use the $#ARGV to get total number of passed

argument to a perl script.
 The $ARGV contains the name of the current file

23

24

mailto:@ARGV.

25-06-2022

#!/usr/bin/perl
get total arg passed to this script
my $total = $#ARGV + 1;
my $counter = 1;
get script name
my $scriptname = $0;
print "Total args passed to $scriptname : $total\n";
Use loop to print all args stored in an array called
@ARGV

foreach my $a(@ARGV)
{
print "Arg # $counter : $a\n";
$counter++;
}

 #!/usr/bin/perl -w
 if ($#ARGV != 2) {
 print "usage: mycal number1 op number2\neg: mycal 5 + 3 OR mycal 5 - 2\n";
 exit;
 }
 $n1=$ARGV[0];
 $op=$ARGV[1];
 $n2=$ARGV[2];
 $ans=0;
 if ($op eq "+") {
 $ans = $n1 + $n2;
 }
 elsif ($op eq "-"){
 $ans = $n1 - $n2;
 }
 elsif ($op eq "/"){
 $ans = $n1 / $n2;
 }
 elsif ($op eq "*"){
 $ans = $n1 * $n2;
 }
 else {
 print "Error: op must be +, -, *, / only\n";
 exit;
 }
 print "$ans\n";

25

26

25-06-2022

Directories Hand l ing
(Contd..)

27

� To create a new directory, call the function “mkdir”.

� Syntax :mkdir (dirname, permissions);

Ex: mkdir ("/u/public /newdir ", 0777);

� To set a directory to be the cur rent working directory, use
the function “chdir”.

� Syntax: chdir (dirname);

Ex :chdir ("/u/public/newdir");

Directories Hand l ing
(Contd..)

28

� To open the directory (already existing) ,use the function
“opendir”

� Syntax : opendir (dirvar, dirname);

Ex: opendir (DIR, "/u/kacper/mydir");

� To close a n opened directory, use the “closedir” function

� Syntax: chdir (dirname);

Ex : closedir (mydir);

27

28

25-06-2022

Pack and Unpack

 The pack function evaluates the expressions
in LIST and packs them into a binary
structure specified by EXPR. The format is
specified using the characters shown in Table below
Each character may be optionally followed by a
number, which specifies a repeat count for the type
of value being packed. that is nibbles, chars, or even
bits, according to the format.

 Syntax
 pack EXPR, LIST

Return Value
 This function returns a packed version of the data in

LIST using TEMPLATE to determine how it is coded.
 pack EXPR, LIST
 Here is the table which gives values to be used in

TEMPLATE.

29

30

25-06-2022

Unpack Function

 The unpack function unpacks the binary
string STRING using the format specified in
TEMPLATE. Basically reverses the operation of
pack, returning the list of packed values according to
the supplied format.

Syntax
 unpack TEMPLATE, STRING
Return Value
 This function returns the list of unpacked values.

1 a
ASCII character string padded with null characters

2 A
ASCII character string padded with spaces

3 b
String of bits, lowest first

4 B
String of bits, highest first

5 c
A signed character (range usually -128 to 127)

6 C
An unsigned character (usually 8 bits)

7 d
A double-precision floating-point number

8 f
A single-precision floating-point number

9 h
Hexadecimal string, lowest digit first

10 H
Hexadecimal string, highest digit first

31

32

25-06-2022

11 i
A signed integer

12 I
An unsigned integer

13 l
A signed long integer

14 L
An unsigned long integer

15 n
A short integer in network order

16 N
A long integer in network order

17 p
A pointer to a string

18 s
A signed short integer

19 S
An unsigned short integer

20 u
Convert to uuencode format

21 v
A short integer in VAX (little-endian) order

22 V
A long integer in VAX order

23 x
A null byte

24 X
Indicates "go back one byte"

25 @
Fill with nulls (ASCII 0)

33

34

25-06-2022

Eval()
Evel function is uses to evaluate a code or an

expression and trap the errors.
Syntax
 eval EXPR
 eval BLOCK

Return Value
 This function returns value of last evaluated

statement in EXPR or BLOCK
Evaluating an Expression: evel{“MGIT”}correct

evel{“MGIT}worng
Evaluating Code: evel{ $s=90;abcdef};
Error are trapped in $@ variable

Example:

use strict;
use warnings;
my $a=90;
my $b=0;
evel{my $avg=$a/$b};
print "error if any :$@\n”;

35

36

25-06-2022

Packages in perl

 A Perl package is a collection of code and a
Perl module is a package defined in a file with the
same name as that of the package name and having
the .pm extension.

 We use package to define a package in a module. A
module name is same as that of the package name
and has .pm extension.

 A module returns a true value to the Perl
interpreter.

37

38

25-06-2022

Perl/site/lib

39

40

25-06-2022

41

42

25-06-2022

43

44

25-06-2022

45

46

25-06-2022

Example Package:

#File name is p.pm
use strict;
use warnings;
#Declaring package p
package p;
sub Hello{

print "Hello\n";
}
1;

Using a Perl module

 To use a module, we use require or use functions.
We use :: to access a function or a variable from a
module.

 Example:
use strict;
use warnings;
#using package p
use p;
#Function Hello of p
p::Hello();

47

48

25-06-2022

Using variable from modules

 We can also use variables from different packages.
But we need to declare them first before using them.
We do this by use vars qw($scalar @array
%hash) and we can also use our ($scalar @array
%hash) with Perl v5.6.0 or higher versions.

use strict;
use warnings;
package b;
our ($var_name);
sub Hello{

print "Hello $var_name\n";
}
1;

49

50

25-06-2022

#using package p
use b;
#using var_name from p
$b::var_name = "Sam";
#Function Hello of b
b::Hello();

Data Structures in perl

 Arrays
 Use to store the data. To declare arrays we need to use @arrayname
 To access $var=$arrayname[indexvalue];c7,d0,d3,

 Hashes
 These are nothing but associ arrays every element contain key and value
 These are declare by using %hashname
 To access $var=$a=$hashname[keyvalue];

 Arrays of Arrays
 Collection of rows and cols it is also called multidimensional arrays

 Hashes of Arrays

 Arrays of Hashes
 Hashes of Hashes

51

52

25-06-2022

Arrays of Arrays

 There are many kinds of nested data structures. The
simplest kind to build is an array of arrays, also
called a two-dimensional array or a matrix.

 # Assign a list of array references to an array.
 @AoA = (
 ["fred", "barney"],

["george", "jane", "elroy"],
["homer", "marge", "bart"],

);
 print $AoA[2][1];

Hashes of Arrays
 Use a hash of arrays when you want to look up each

array by a particular string rather than merely by an
index number.

 %HoA = (flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],

simpsons => ["homer", "marge", "bart"],);
You can print all of the families by looping through the

keys of the hash:
for $family (keys %HoA)
{ print "$family: @{ $HoA{$family} }\n"; }

53

54

25-06-2022

Array of Hashes

 An array of hashes is useful when you have a bunch
of records that you'd like to access sequentially, and
each record itself contains key/value pairs. Arrays of
hashes are used less frequently than the other
structures

@AoH = (
{ husband => "barney",
wife => "betty",
son => "bamm bamm",
},
{

husband => "george",
wife => "jane",

son => "elroy",

},
{
husband => "homer",
wife => "marge",

son => "bart",
},
);

55

56

25-06-2022

Hashes of Hashes

 A multidimensional hash is the most flexible of Perl's
nested structures. It's like building up a record that
itself contains other records. At each level, you index
into the hash with a string (quoted when necessary).

57

58

25-06-2022

59

60

25-06-2022

61

62

25-06-2022

63

64

25-06-2022

65

66

25-06-2022

67

68

25-06-2022

69

70

25-06-2022

Interfacing to the Operating System

 pwd
 Prints the current working directory.

 cd [name]Changes directory to the given name. If no
name is given, thenchanges directory to the home
directory. See moredetails.list name [name...]

 For each name given on the command line:if it’s a simple file, the
command will simply printthe file name and its file size. If the
nameis a directory, it will listall the files in that directory and
their file sizes. The command mustgive an error message if a file
name does notexist. You may choose to havethe . and ..
directories appear in adirectory listing or not, as you wish.

 del name [name...]
 Deletes the given files. If a file doesn’t exist, the commandgives

an error message. This command does not ask the user ifshe
wishes todelete the files; it just goes ahead and deletes them.

 create name [name...]
 Creates the given files if they don’t already exist. To createa file,

just open it and close it immediately afterwards. Ifyou can’t
create afile, give an error message. (This will happen ifyou try to
create a file in a directory that doesn’t existor where you don’t
havepermission). If a file already exists,the program does
nothing to it.

 Quit : Exits the program.

71

72

25-06-2022

Finding the home directory
 Unfortunately, the %ENV entries for home directory

are different on UNIXand Windows. Here is code
that will reliably get the name of yourhome
directory:

use 5.010;
use strict;
use warnings;

use Cwd qw(getcwd);

use Cwd; # this goes at the top of your file
my $working_dir; # variable declaration
my $home_dir;
$working_dir = getcwd(); # this gives you what you want
print $working_dir;

\MGIT\print “\\MGIT\\”

chdir "E:\\AY-2020\\SL";
print getcwd();

73

74

25-06-2022

 if (exists($ENV{"HOME"}))
 {
 $home_dir = $ENV{"HOME"}; # UNIX
 }
 else
 {
 $home_dir = $ENV{"HOMEDRIVE"} .

$ENV{"HOMEPATH"}; # Windows
 }
 print $home_dir;

Creating Internet ware applications

 The internet is a rich source of information, held on web
servers, FTP servers, POP/IMAP mail servers, news
servers etc.

 A web browser can access information on web servers
and FTP servers, and clients access mail and news
servers.

 however, this is not the way of to the information: an
'internet-aware' application can access a
server and collect the information with out
manual intervention.

 For suppose that a website offers 'lookup' facility in
which the user a query by filling in a then clicks the
'submit' button .

75

76

25-06-2022

 the data from the form in sent to a CGI program on the
server(probably written in which retrieves the
information, formats it as a webpage, and returns the
page to the browser.

 A perl application can establish a connection to the
server, send the request in the format that the browser
would use, collect the returned HTML and then extract
the fields that form the answer to the query.

 In the same way, a perl application can establish a
connection to a POP3 mail server and send a request
which will reSult in the server returning a message listing
the number of currently unread messages.

 Much of the power of scripting languages comes from the way
in which they hide the complexity of operations, and this is
particularly the case when we make use of specialized
modules: tasks that might pages of code in C are achieved in
few lines.

 The LWP (library for WWW access in perl) collection of
modules is a very good case in point it makes the kind of
interaction described above almost trivial.

 The LWP:: simple module is a interface to web servers. it can
be achieved by exploiting modules, LWP::simple we can
retrieve the contents of a web page in a statement:

 use LWP::simple
 $url=...http://www.somesite.com/index.html
 $page=get($url);

77

78

http://www.somesite.com/index.html

25-06-2022

Dirty Hands Internet Programming

 Modules like LWP: : Simple and LWP: :User Agent meet the needs
of most programmers requiring web access, and there are numerous
other modules for other types of Internet access.

 EX:- Net: : FTP for access to FTP servers
 Some tasks may require a lower level of access to the network, and

this is provided by Perl both in the form of modules(e.g IO: : Socket)
and at an even lower level by built-in functions.

 Support for network programming in perl is so complete that
you can use the language to write any conceivable internet
application Access to the internet at this level involves the use of
sockets, and we explain what a socket is before getting down to
details of the programming.

 Sockets are network communication channels, providing a bi-
directional channel between processes on different machines.

 Sockets were originally a feature of UNIX other UNIX systems
adopted them and the socket became the de facto mechanism
of network communication in the UNIX world.

 The popular Winsock provided similar functionality for
Windows, allowing Windows systems to communicate over
the network with UNIX systems, and sockets are a built-in
feature of Windows 9X and WindowsNT4.

 From the Perl programmer’s point a network socket can be
treated like an open file it is identified by a you write to it with
print, and read it from operator.

 The socket interface is based on the TCP/IP protocol suite, so
that all information is handled automatically. In TCP a
reliable channel, with automatic recovery from data loss or
corruption: for this reason a TCP connection is often
described as a virtual circuit.

79

80

25-06-2022

Security Issues in Perl Scripts

C->cpp->java

 A programming language, by design, does not
normally constitute a security risk;

 Almost every language has certain flaws that may
facilitate to some extent the creation of insecure
software, but the overall security of a piece of
software still depends largely on the knowledge,
understanding, and security consciousness of the
authors. Perl has its share of security “gotchas”, and
most Perl programmers are aware of none of them.

81

82

25-06-2022

Basic user input vulnerabilities

 One big source of security problems in Perl scripts is
improperly validated (or unvalidated) user input.
Any time your program might take input from an
untrusted user, even indirectly, you should be
cautious.

 If trusted and used without validation, improper user
input to such applications can cause many things to
go wrong. The most common and obvious mistake is
executing other programs with user provided
arguments, without proper validation.

The system() and exec() functions

 One way to execute an external program or a system
command is by calling the exec() function.

 When Perl encounters an exec() statement, it looks
at the arguments that exec() was invoked with, then
starts a new process executing the specified
command.

 Perl never returns control to the original process that
called exec().

83

84

25-06-2022

[kkkk]

 Another similar function is system(). system() acts
very much like exec().

 The only major difference is that Perl first forks off a
child from the parent process.

 The child is the argument supplied to system().
 The parent process waits until the child is done

running, and then proceeds with the rest of the
program.

85

86

25-06-2022

 The argument given to system() is a list — the first
element on the list is the name of the program to be
executed and the rest of the elements are passed on as
arguments to this program. However, system() behaves
differently if there is only one parameter. When that is
the case, Perl scans the parameter to see if it contains any
shell metacharacters. If it does, then it needs those
characters to be interpreted by a shell. Therefore, Perl
will spawn a command shell (often the Bourne shell) to
do the work. Otherwise, Perl will break up the string into
words, and call the more efficient C library call execvp(),
which does not understand special shell characters.

The open() function

 The open() function in Perl is used to open files.
 Used like this, “filename” is open in read-only mode.

If “filename” is prefixed with the ">" sign, it is
open for output, overwriting the file if it already
exists. If it is prefixed with ">>" it is open for
appending. The prefix "<" opens the file for input,
but this is also the default mode if no prefix is used.
Some problems of using unvalidated user input as
part of the filename should already be obvious.

87

88

25-06-2022

The eval() and the /e regex modifier

 The eval() function can execute a block of Perl code
at runtime, returning the value of the last evaluated
statement.

 This kind of functionality is often used for things
such as configuration files, which can be written as
perl code.

 Unless you absolutely trust the source of code to be
passed to eval(), do not do things like eval
$userinput. This also applies to the /e modifier in
regular expressions that makes Perl interpret the
expression before processing it.

Filtering User Input

 One common approach to solving most of the
problems we’ve been discussing in this section is to
filter out unwanted meta-characters and other
problematic data. For example, we could filter out all
periods to avoid backwards directory traversal.
Similarly, we can fail whenever we see invalid
characters.

89

90

25-06-2022

TCL-UNIT-5

• TCL Structure ,syntax,
• Variables and Data in TCL,
• Control Flow(if,else,while,for,foreach)
• Data Structures(list,array,hash), input/output,
• procedures, strings, patterns, files,
• Advance TCL- eval, source, exec and uplevel

commands,
• Name spaces, trapping errors, event driven

programs,

1

2

25-06-2022

• making applications internet aware, Nuts and
Bolts

• Internet Programming, Security Issues, C
Interface

• Tk
• Tk-Visual Tool Kits,
• Fundamental Concepts of Tk,
• Tk by example,
• Events and Binding, Perl-Tk.

Features

• Easy to learn
• Standard systax
• Graphical interfaces
• Cross-platform applications
• Rapid development
• Extensive and embeddable
• Flexible integration
• Free

3

4

25-06-2022

5

Learning Tcl/TK

• What is Tcl/TK?
– An interpreted programming language

• Build on-the-fly commands, procedures
• Platform-independent
• Easy to use for building GUIs

• Need little experience with programming
– Easy
– Programs are short, efficient

• Be willing to learn something new

6

Why Tcl/TK?

• Easy, fast programming
• Free
• Download & install Tcl/TK 8.4 on your own

– CSE machines (state) are set up with Tcl/TK 8.0
– http://tcl.activestate.com/software/tcltk/downloadnow84.tml

• Lots of online documentation, mostly free
• Solutions for AI homework will be in Tcl
• Base for the CSLU toolkit

5

6

http://tcl.activestate.com/software/tcltk/downloadnow84.tml

25-06-2022

7

Hello World

• How to run your Tcl program
– Command line (state.cse.ogi.edu or DOS)

• Type "tclsh" to launch the console

– Type your program directly on the console
– Use the command "source" (source filename)
– Double click your .tcl file (if associated)

• Output on the console
– Command: puts "Hello, world!"

8

Hello World

• Command line (state.cse.ogi.edu or DOS)
– Type "tclsh" to launch the console
– Type tcl code into console

7

8

25-06-2022

9

Hello World
• Sourced on the console

– Type "tclsh", followed by name of program file

######## hello.tcl #######
puts "Hello, world!"

10

• Double-clicking your .tcl file
(if associated with wish84.exe)

####### hello.tcl ########
Hello.tcl
wm withdraw .
console show
puts "Hello, world!"

Hello World

9

10

25-06-2022

11

Basic operations
• print to screen (puts)

puts –nonewline "Hello, world!"
puts "!!"

• assignment (set)
set income 32000

puts "income is $income"
(using '$' to get the value of a variable)

• mathematical expressions (expr)
set a 10.0

expr $a + 5

expr int($a/3)

Tcl: Tool Command Language
• Simple syntax (similar to sh):

set a 47 í 47

Substitutions:
set b $a í 47
set b [expr $a+10] í 57

• Quoting:
set b "a is $a" í a is 47
set b {[expr $a+10]} í [expr
$a+10]

11

12

25-06-2022

13

14

25-06-2022

Control structures

• If
• If-else
• switch
• While
• For
• foreach

If-else
• If { condition } {
True part
• } else {
False Part
• }

set income 32000
if {$income > 30000} {

puts "$income -- high"
} elseif {$income > 20000}
{
puts "$income --

middle"
} else {

puts "$income -- low"
}

15

16

25-06-2022

switch

• switch switchingString
{

• matchString1 {
• Body1
• }
• matchString2 {
• body2

• }
• ...
• matchStringn {
• bodyn
• }
• }

• #!/usr/bin/tclsh
• set no 1;
• switch $no {
• 2 {
• puts "two"
• }
• 5 {
• puts "five"

• }
• 1 {
• puts "one"
• }
• default {
• puts "Invalid no"
• }
• }

17

18

25-06-2022

While loop

• While{condition} {
• ---body of loop
• }
• Example Lab Program

no 11:
set i 1;
set product 1;

set x 5;
while {$i <= $x} {

set product [expr
$product * $i]

incr i
}

puts "factorial of
$x=$product";

Break & Continue example

19

20

25-06-2022

For loop

for {set i 0} {$i < 100} {incr i} {
puts "I am at count $i and going up"
after 2000
#update

}
The update idle tasks command is useful in scripts where
changes have been made to the application's state and you want
those changes to appear on the display immediately, rather than
waiting for the script to complete. Most display updates are
performed as idle call backs, so update idle tasks will cause them
to run.

21

22

25-06-2022

23

Data Structures (LIST)
• Everything is a list!
• Many ways to create a list
set myList [list a b c]
set myList "a b c"
set myList {a b c}

set myList [list $a $b $c]
set myList {$a $b $c}

set myList [list a b c]
set myList "a b c"

set s Hello
puts "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

24

List operations
set lstStudents [list "Fan" "Kristy" "Susan"]
puts [lindex $lstStudents 0]

puts [lindex $lstStudents end]

puts [llength lstStudents] (unexpected result!)
puts [llength $lstStudents]

lappend $lstStudents "Peter" (wrong!)
lappend lstStudents "Peter"
puts [linsert lstStudents 2 "Tom"] (wrong!)
puts [linsert $lstStudents 2 "Tom"]
set lstStudents [linsert $lstStudents 2 "Tom"]
set lstStudents [lreplace $lstStudents 3 3 "Rachel"]
set lstStudents [lreplace $lstStudents end end]

set lstStudents [lsort –ascii $lstStudents]
puts [lsearch $lstStudents "Peter"]

23

24

25-06-2022

Lab Program no 13

Lab Program no 14

25

26

25-06-2022

• Sorting a list using ASCII sorting:
• % lsort {a10 B2 b1 a1 a2}
• B2 a1 a10 a2 b1
• Sorting a list using Dictionary sorting:

• % lsort -dictionary {a10 B2 b1 a1 a2}
• a1 a2 a10 b1 B2
• Sorting lists of integers:

• % lsort -integer {5 3 1 2 11 4}
• 1 2 3 4 5 11
• % lsort -integer {1 2 0x5 7 0 4 -1}
• -1 0 1 2 4 0x5 7
• Sorting lists of floating-point numbers:

• % lsort -real {5 3 1 2 11 4}
• 1 2 3 4 5 11
• % lsort -real {.5 0.07e1 0.4 6e-1}
• 0.4 .5 6e-1 0.07e1

27

28

25-06-2022

For each loop:

• Used for iterate arrays or lists
• Example1:
set lstColors {red orange yellow
green blue purple}

foreach c $lstColors {

puts $c

}

For each loop:

• Example 2:
• set lstColors {red orange yellow
green blue purple}

set lstFoods {apple orange banana
lime berry grape}

foreach f $lstFoods c $lstColors {

puts "a $f is usually $c"

}

29

30

25-06-2022

Arrays:

31

32

25-06-2022

33

Array operations/ Associative arrays
Associative arrays (string as index)
set color(rose) red
set color(sky) blue
set color(medal) gold
set color(leaves) green
set color(blackboard) black
puts [array exists color]

(tests if an array with the name "color" exists)
puts [array exists colour]
puts [array names color] (returns a list of the index strings)
foreach item [array names color] {

puts "$item is $color($item)"
} (iterating through array)
set lstColor [array get color] (convert array to list)
array set color $lstColor (convert list to array)

33

34

25-06-2022

35

36

25-06-2022

procedure calls (embedded commands)
set b [expr $a + 5]
puts "The value of b is $b"

create your own procedure (called by value only)
proc foo {a b c} {

return [expr $a * $b - $c]
}
puts [expr [foo 2 3 4] + 5]

37

38

25-06-2022

Lab Program 12:
A program to print a

multiplication table to the
screen

proc times_table { x } {
puts "Multiplication table for
$x."

for {set i 1 } { $i <= 10} {incr i } {
set answer [expr $x * $i]
puts "$x times $i = $answer"

}
}

proc run_table { } {
puts -nonewline "Enter a
number: "

flush stdout
gets stdin x
times_table $x

}

run_table
#end of program

40

Variable scope

local and global variables
set a 5

set b 6

set c 7

proc var_scope { } {

global a

set a 3

set b 2

set ::c 1

}

var_scope

puts "The value for a b c is: $a $b $c"

39

40

25-06-2022

41

String operations
set statement " Fan is a student "
set statement [string trim $statement]

puts [string length $statement]

puts [string length statement]

puts [string index $statement 4]

puts [string index $statement end]
puts [string first "is" $statement]

(string last)
puts [string first $statement "is"]
puts [string range $statement 4 end]

puts [string replace $statement 9 end "professor"]
puts [string match "*student" $statement] (* ? [])

Pattrens in Tcl

41

42

25-06-2022

#Example on Regular Expressions
set sample "Where there is a will, There is a way."

#
Match the first substring with lowercase letters only
#
set result [regexp {[a-z]+} $sample match]
puts "Result: $result match: $match"

Match the first two words, the first one allows uppercase
set result [regexp {([A-Za-z]+) +([a-z]+)} $sample match sub1 sub2]
puts "Result: $result Match: $match 1: $sub1 2: $sub2"

Replace a word
"Where there is a will, There is a way."
regsub "way" $sample "lawsuit" sample2
puts "New: $sample2"

Use the -all option to count the number of "words“

puts "Number of words: [regexp -all {[^]+} $sample]"

43

44

25-06-2022

45

46

25-06-2022

File copy program
lab program no 16

• puts "enter file name to copy";
• gets stdin source

• set fps [open $source r];
• #set src [read $fps];

• puts "enter file nwe file name ";
• gets stdin target

• set fpt [open $target w+];

• #puts $fpt $src;

• while { [gets $fps data] >= 0 } {
• puts $fpt $data;
• }

• close $fps;
• close $fpt;
• puts "file is copied created";

Seek and tell commands

• Set position [tell $filepointer]

47

48

25-06-2022

Source command:
source - Evaluate a file or resource as a Tcl script

source fileName
• This command takes the contents of the specified file

or resource and passes it to the Tcl interpreter as a text
script.

• The return value from source is the return value of the
last command executed in the script.

• If an error occurs in evaluating the contents of the
script then the source command will return that error.

• If a return command is invoked from within the script
then the remainder of the file will be skipped and
the source command will return normally with the
result from the return command.

• Example : source foo.tcl

Eval command

• eval - Evaluate a Tcl script
• DESCRIPTION
• Eval takes one or more arguments, which

together comprise a Tcl script containing one or
more commands.

• Eval concatenates all its arguments in the same
fashion as the concat command, passes the
concatenated string to the Tcl interpreter
recursively, and returns the result of that
evaluation (or any error generated by it).

49

50

25-06-2022

exec

• Exec used to execute the commands
• Exec ls
• Exec a*
• Exec
• exec ls *.tcl

Uplevel command

• Uplevel returns the result of that evaluation.
• If level is an integer then it gives a distance (up

the procedure calling stack) to move before
executing the command.

• If level consists of # followed by a number then
the number gives an absolute level number.

• If level is omitted then it defaults to 1.
• Level cannot be defaulted if the

first command argument starts with a digit or #.

51

52

25-06-2022

• proc a {} {
• set x a
• uplevel 3 {set x Hi}
• puts "x in a = $x"
• }
• proc b {} {
• set x b
• a
• puts "x in b = $x"
• }
• proc c {} {
• set x c
• b
• puts "x in c = $x"
• }
• set x main
• c
• puts "x in main == $x"
•

Name spaces

• Namespace is a container for set of identifiers
that is used to group variables and
procedures.

• Namespaces are available from Tcl version
8.0.

• Before the introduction of the namespaces,
there was single global scope.

53

54

25-06-2022

#!/usr/bin/tclsh

namespace eval MyMath {
Create a variable inside the namespace
variable myResult

}

Create procedures inside the namespace
proc MyMath::Add {a b } {

set ::MyMath::myResult [expr $a + $b]
}
MyMath::Add 10 23

puts $:::MyMath:myResult

Trapping Errors

55

56

25-06-2022

• #!/usr/bin/tclsh

• proc Div {a b} {
• if {$b == 0} {
• error "Error generated by

error" "Info String for error" 401
• } else {
• return [expr $a/$b]
• }
• }

• if {[catch {puts "Result = [Div 10
0]"} errmsg]} {

• puts "ErrorMsg: $errmsg"
• puts "ErrorCode: $errorCode"
• puts

"ErrorInfo:\n$errorInfo\n"
• }

• if {[catch {puts "Result = [Div 10
2]"} errmsg]} {

• puts "ErrorMsg: $errmsg"
• puts "ErrorCode: $errorCode"
• puts

"ErrorInfo:\n$errorInfo\n"
• }

• The catch command may be used to prevent
errors from aborting command interpretation.
The catch command calls the Tcl interpreter
recursively to execute script, and always returns
without raising an error, regardless of any errors
that might occur while executing script.

set someFile "abc11.tcl"
if { [catch {open $someFile r} fid] } {

puts stderr "Could not open $someFile for
writing\n$fid"
exit 1

} else {
puts "file opened ..."

}

57

58

25-06-2022

Event-driven programming
• Event-driven programming is used in long-running

programs like network servers and graphical user
interfaces.

• The after command causes Tcl commands to occur at a
time in the future, and the file event command
registers a command to occur in response to file
input/output (I/O).

• In event-driven programming the program maintains a
queue of events that have occurred and responds to
those events as it can.

• Event-driven programming is the style used when
writing graphical user interfaces in Tk.

59

60

25-06-2022

Interacting with the internet

• Interacting with the Internet is all
about clients and protocols.

• client
• A client is a piece of software that is designed to access

a server (another software providing some sort of
service) via some sort of network or external
communication technique. The idea is that the server
provides some sort of published protocol that allows
client software to be written for various purposes. One
might see client software with a GUI interface, a CLI,
and some sort of library API.

61

62

25-06-2022

Tcl Tk

• Tk refers to Toolkit and it provides cross
platform GUI widgets, which helps you in
building a Graphical User Interface.

• Wish - the windowing shell, is a simple
scripting interface to the Tcl/Tk language

• The basic component of a Tk-based
application is called a widget.

• A component is also sometimes called a
window

Features of TCL/Tk

• It is cross platform with support for Linux, Mac OS,
Unix, and Microsoft Windows operating systems.

• It is an open source.
• It provides high level of extendibility.
• It is customizable.
• It is configurable.
• It provides a large number of widgets.
• It can be used with other dynamic languages and not

just Tcl.
• GUI looks identical across platforms.

63

64

25-06-2022

Applications Built in Tk
• Dashboard Soft User Interface
• Forms GUI for Relational DB
• Ad Hoc GUI for Relational DB
• Software/Hardware System Design
• Xtask - Task Management
• Musicology with Tcl and Tk
• Calender app
• Tk mail
• Tk Debugger

65

66

25-06-2022

67

68

25-06-2022

Example :1
• label .label1 -text "namitha" -width 30
• label .label2 -text "geethajali" -width 60
• label .vinthraj -text "vinthraj" -width 60
• button .b1 -text "mgit"
• entry .e1 -text "Entry Widget"
• pack .label1
• pack .label2
• pack .vinthraj
• pack .b1
• pack .e1
• entry .e2 -text "Entry Widget1"
• pack .e2

69

70

25-06-2022

Example 2:
• #!/usr/bin/wish
• wm title . Simple
• proc myEvent1 { } {
• puts "Event triggered button1 cse3 cr"
• }
• proc myEvent2 { } {
• puts "Event triggered button2 cse3 gr"
• }
• wm geometry . 300x200+100+100
• button .myButton1 -text "Button 1" -command myEvent1
• button .myButton2 -text "Button 2" -command myEvent2
• button .hello -text "Quit" -command { exit }
• #pack [button .myButton1 -text "Button 1" -command myEvent
• pack .myButton1
• pack .myButton2
• pack .hello

Example 3
• #!/usr/bin/wish

• frame .myFrame1 -background red -relief ridge -
borderwidth 8 -padx 10 -pady 10 -height 100 -width 100

• frame .myFrame2 -background blue -relief ridge -
borderwidth 8 -padx 10 -pady 10 -height 100 -width 50

• label .myFrame1.l1 -text "MGIT"
• button .myFrame1.b1 -text "vishnu" -command { exit }
• pack .myFrame1
• pack .myFrame2
• pack .myFrame1.b1

71

72

25-06-2022

Example 4
• set font helvetica

• proc applyIt { } {
• global bold italics font
• if {$bold} {set weight bold} {set weight

normal}
• if {$italics} {set slant italic} {set slant roman}
• .b configure -font "-family $font -weight

$weight -slant $slant"
• }

• checkbutton .c1 -text Bold -variable bold -
anchor w

• checkbutton .c2 -text Italics -variable italics -
anchor w

• radiobutton .r1 -text Helvetica -variable font -
value helvetica

• radiobutton .r2 -text Courier -variable font -
value courier

• button .b -text Apply \
• -command "applyIt"

• applyIt

• #The "sticky" option aligns items to the left
(west) side

• grid .c1 -row 0 -column 1 -sticky w
• grid .c2 -row 1 -column 1 -sticky w
• grid .r1 -row 0 -column 0 -sticky w
• grid .r2 -row 1 -column 0 -sticky w
• grid .b -row 2 -column 0 -columnspan 2

Example 5
• #Create a scrollable listbox containing

color names. When a color is
• # double-clicked, the label on the

bottom will change to show the
• # selected color name and will also

change the background color

• proc setLabel {color} {
• .label configure -text $color -

background $color
• }

• scrollbar .s -command ".l yview"
• listbox .l -yscroll ".s set"

• label .label -text "Nothing Selected"

• bind .l <Double-B1-ButtonRelease>
{setLabel [.l get active]}

• grid .l -row 0 -column 0 -sticky news
• grid .s -row 0 -column 1 -sticky news
• grid .label -row 1 -column 0 -

columnspan 2

• .l insert 0 gray60 gray70 gray80 gray85
gray90 gray95 \

• snow1 snow2 snow3 snow4
seashell1 seashell2 \

• seashell3 seashell4 AntiqueWhite1
AntiqueWhite2 AntiqueWhite3 \

•
•

73

74

25-06-2022

Example 6
• menu .mbar
• . configure -menu .mbar

• menu .mbar.fl -tearoff 0
• menu .mbar.f2 -tearoff 0
• .mbar add cascade -menu

.mbar.fl -label File \
• -underline 0
• .mbar add cascade -menu

.mbar.f2 -label Edit \
• -underline 0

• .mbar.fl add command -
label New

• .mbar.fl add command -
label Exit -command { exit
}

• .mbar.f2 add command -
label Cut

• wm title . "Simple menu"
• wm geometry .

350x250+300+300

75

