# B.Tech. III Semester End Examinations <br> (Model Question Paper) 

Course Title: Computational Statistics
Time: 3 hours

Course Code: MA304BS
Max. Marks: 70

## Note: Answer ALL Questions <br> Part-A (10x $2=20$ Marks)



## Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question |  |  |  |  |  |  |  |  |  |  |  | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2.a) | Solve: $\quad \begin{array}{ll}3 x+4 y \equiv 5(\bmod 13) \\ & 2 x+5 y \equiv 7(\bmod 13\end{array}$ |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 1 | 2 |
| 2.b) | Solve the system of linear congruences$\begin{gathered} 2 x+3 y+z \equiv 3(\bmod 5) \\ x+2 y+3 z \equiv 1(\bmod 5) \\ 2 \mathrm{x}+\mathrm{z} \equiv 1(\bmod 5) . \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 1 | 2 |
| OR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2. c) | Factorize the number 23449 using Fermat factorization. |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 1 | 2 |
| 2.d) | Solve the system of linear congruences$x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7)$ |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 1 | 2 |
| Unit-II |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. a) | Fit a second degree polynomial of the form $y=a+b x+c x^{2}$ to the following data |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 2 | 2 |
|  | x | 1 | 2 | 2 | 3 | 4 |  | 5 |  | 6 |  | 7 |  |  |  |  |
|  | y | 2.3 |  | 5.2 | 9.7 | 16 |  |  | 9.4 | 35.5 |  | 54.4 |  |  |  |  |
| 3. b) | Find the regression equation of $Y$ on $X$ and estimate $Y$ when $X=55$ from the following |  |  |  |  |  |  |  |  |  |  |  | 5 | 1 | 2 | 2 |
|  | x | 40 | 50 | 38 | 60 | 65 | 50 |  | 35 |  |  |  |  |  |  |  |
|  | y | 38 | 60 | 55 | 70 | 60 | 48 |  | 30 |  |  |  |  |  |  |  |
| OR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. c) | Psychological tests of intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio(I.R.) and engineering ratio(E.R.) . Calculate the coefficient of correlation . |  |  |  |  |  |  |  |  |  |  |  | 5 | 3 | 2 | 2 |
|  | Student | A | B | C | D | E | F |  | G | H | I | J |  |  |  |  |
|  | I.R. | 105 | 104 | 102 | 101 | 100 | 99 |  | 98 | 96 | 93 | 92 |  |  |  |  |
|  | E.R. | 101 | 103 | 100 | 98 | 95 | 96 |  | 104 | 92 | 97 | 94 |  |  |  |  |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.d) | Find the equation of the regression line of $X$ on Y for the following data: |  |  |  |  |  |  |  |  |  | 5 | 1 | 2 | 1 |
|  | x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |
|  | y | 4 | 8 | 2 | 12 | 10 | 14 | 16 | 6 | 18 |  |  |  |  |
| Unit-III |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4. a) | Suppose a continuous random variable X has the probability density function $f(x)=k\left(1-x^{2}\right)$ for $0<x<1$ and $f(x)=0$ other wise. Find (i) $K$ (ii) Mean (iii) Variance. |  |  |  |  |  |  |  |  |  | 5 | 1 | 3 | 2 |
| 4. b) | A manufacturer of Cotter pins knows that 5\% of his product is defective. Pins are sold in a boxes of 100 . He guarantees that not more than 10 pens will be defective. What is the approximate probability that a box will fail to meet the guaranteed quality. |  |  |  |  |  |  |  |  |  | 5 | 3 | 3 | 2 |
| OR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4. c) | A player tosses 3 fair coins. He wins Rs. 500 if 3 heads appear, Rs. 300 if 2 heads appear, Rs 100 if 1 head occurs. On the other hand, he loses Rs. 1500 if 3 tails occur. Find the expected gain of the player. |  |  |  |  |  |  |  |  |  | 5 | 1 | 3 | 2 |
| 4.d) | Out of 800 families with 5 children each, how many would you expect to have i) 3 boys ii) At least one boy iii) No girls |  |  |  |  |  |  |  |  |  | 5 | 1 | 3 | 2 |
| Unit-IV |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5. a) | Determine a $95 \%$ confidence interval for the mean of a normal distribution with various 0.25 , using a sample of $\mathrm{n}=100$ values with mean to 212.3. |  |  |  |  |  |  |  |  |  | 5 | 5 | 4 | 1 |
| 5. b) | The mean life of a sample of 10 electric bulbs was found to be 1456 hours with a standard deviation of 432 hours. A second sample of 17 bulbs chosen from a different batch showed a mean life of 1280 hours with a standard deviation of 398 hours. Is there a significant difference between the means of two batches? |  |  |  |  |  |  |  |  |  | 5 | 2 | 4 | 2 |
| OR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5. c) | Among 900 people in a state 90 are found to be chapati eaters. Construct $99 \%$ confidence interval for the true proportion. |  |  |  |  |  |  |  |  |  | 5 | 6 | 4 | 1 |
| 5.d) | A random sample of 10 boys had the following I.Q's : 70, 120, 110, 101, 88, 83,95, 98107 and 100 . Does this data support the assumption that the population mean IQ of 100 ? |  |  |  |  |  |  |  |  |  | 5 | 2 | 4 | 2 |
| Unit-V |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6. a) | Find whether the following is a regular transition matrix$\left[\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{array}\right]$ |  |  |  |  |  |  |  |  |  | 5 | 1 | 5 | 1 |
| 6. b) | Three boys A, B, C are throwing a ball to each others. A always throws the ball to B and B always throws the ball to C . But C is just as likely to throw the ball to B as to A. If $C$ was the 1 st person to throw the ball. Find the probability that (i) A has the ball (ii) B has the ball (iii) C has the ball after three throws. |  |  |  |  |  |  |  |  |  | 5 | 1 | 5 | 1 |
|  | OR |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6. c) |  |  |  |  |  |  |  |  |  |  | 5 | 1 | 5 | 1 |
| 6.d) | Define (i) Stochastic Matrix (ii)Regular Stochastic Matrix (iii)Steady state condition. <br> A professor has three pet questions, one of which occurs on every test he gives. He never uses the same question twice in successive examinations. If he uses question number 1 , he tosses a coin and uses question number 2, if he gets a head. If he uses question number 2 , he tosses 2 coins and uses question number 3 , if both are heads. If he uses question number 3 , he tosses 3 coins and uses question number 1 , if all are heads. In the long run, which question does he use most often and with how much frequency is it used. |  |  |  |  |  |  |  |  |  | 5 | 1 | 5 | 2 |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

## B.Tech. III Semester End Examinations

(Model Question Paper)

Course Title: Business Economics and Financial Analysis
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20 \mathrm{Marks}$ )

Course Code: MS301HS
Max. Marks : 70

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 1. a) | Define Business | 2 | 1 | 1 | 1 |
| 1. b) | What is meant by National Income? | 2 | 1 | 1 | 7 |
| Unit-II |  |  |  |  |  |
| 1. c) | Describe Law of Demand | 2 | 2 | 2 | 12 |
| 1. d) | What are the Determinants of supply? | 2 | 1 | 2 | 7 |
| Unit-III |  |  |  |  |  |
| 1. e) | Explain Monopoly | 2 | 2 | 3 | 7 |
| 1.f) | What is meant by Sunk Cost? | 2 | 1 | 3 | 11 |
| Unit-IV |  |  |  |  |  |
|  |  |  |  |  |  |
| 1. g) | Describe Accounting Equation | 2 | 2 | 4 | 11 |
| 1. h) | What is meant by Conservatism? | 2 | 1 | 4 | 8 |
| Unit-V |  |  |  |  |  |
| 1. i) | Explain Liquidity | 2 | 2 | 5 | 11 |
| 1.j) | List Solvency ratios | 2 | 1 | 5 | 11 |
| Part-B (5x 10=50 Marks) |  |  |  |  |  |
| Q. No. | Stem of the Question | M | L | CO | PO |
| Unit-I |  |  |  |  |  |
| 2. a) | Explain different sources of capital. | 5 | 2 | 1 | 1 |
| 2. b) | Describe the advantages and disadvantages of sole trading business. | 5 | 2 | 1 | 7 |
| OR |  |  |  |  |  |
| 2. c) | Explain the nature of Business Economics. | 5 | 2 | 1 | 7 |
| 2. d) | Differentiate between Private Limited Companies and Public Limited Companies | 5 | 4 | 1 | 7 |
| Unit-II |  |  |  |  |  |
| 3. a) | Describe Law of Demand | 5 | 2 | 2 | 11 |
| 3. b) | Explain the Determinants of Supply. | 5 | 2 | 2 | 7 |
| OR |  |  |  |  |  |
| 3. c) | Compute Elasticity of demand. <br> The quantity demand for the product X is 30 units, when the price is Rs. 15 . The quantity demanded increased to 40 units, as price decreased to Rs. 10. Calculate arc elasticity of demand. | 5 | 3 | 2 | 2 |
| 3. d) | Explain different methods of Demand Forecasting | 5 | 2 | 2 | 12 |
| Unit-III |  |  |  |  |  |
| 4. a) | How can a producer determine the least-cost combination of inputs? | 5 | 1 | 3 | 3 |
| 4. b) | Differentiate between perfect competition and monopoly competition. | 5 | 4 | 3 | 8 |
| OR |  |  |  |  |  |
| 4. c) | Explain Law of Diminishing Marginal Returns. | 5 | 2 | 3 | 7 |
| 4. d) | Describe various Pricing strategies used by modern business organizations. | 5 | 2 | 3 | 5 |
| Unit-IV |  |  |  |  |  |
| 5. a) | Classify the following accounts into various (Personal, Real or Nominal) types of accounts. <br> i) Salary account <br> ii) Outstanding wages account <br> iii) Rent account <br> iv) Bank account <br> v) Insurance prepaid <br> vi) Drawings account <br> vii) Bad debts account | 5 | 2 | 4 | 11 |


|  | viii) Machinery account <br> ix) Furniture account <br> Patents account |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5. b) | Journalise the following transactions: <br> Jan 1, 2021 Commenced with Cash <br> Rs. $8,00,000$ <br> Jan 3, 2021 Purchased Goods worth <br> Rs. $1,50,000$ <br> Jan 8, 2021 Sold Goods to Mr. Ramu <br> Rs. 1,10,000 <br> Jan 30, 2021 Salaries paid <br> Rs. 40,000 <br> Jan 30, 2021 Rent paid <br> Rs. 20,000 |  |  |  |  | 5 | 3 | 4 | 11 |
|  | OR |  |  |  |  |  |  |  |  |
| 5. c) | Explain how a ledger account can be maintained? |  |  |  |  | 5 | 2 | 4 | 11 |
| 5. d) | Prepare Trading and Pro$\square$ Capital PurchaseFurniture <br> Interest r <br> CaseCash <br> DebtorsOffice St <br> Machine Bank Loa <br> Adjustments: <br> i) Closing <br> ii) Depreci <br> Salaries outstanding ₹ 50 | Loss acco <br> Trial Balan <br> articulars $\qquad$ <br> ed $\qquad$ <br> ery <br> rges <br> ₹ 12,000 achinery @ | ount from the nce as on 3 $\qquad$ $\qquad$ $\square$ $\qquad$ $\qquad$ $\qquad$ $\square$ <br> Total <br> $10 \%$ p.a. |  | nformation. <br> Credit(₹) <br> $1,00,000$ <br>  <br> 3,000 <br>  <br> 5,000 <br> 2,000 <br> 90,000 | 5 | 3 | 4 | 11 |
|  | Unit-V |  |  |  |  |  |  |  |  |
| 6. a) | How accounting ratios are useful in the inter-firm comparison. |  |  |  |  | 5 | 1 | 5 | 10 |
| 6. b) | From the given Balance <br> a) Debt-equity ratio <br> b) Liquidity ratio <br> c) Fixed assets to cu <br> d) Fixed assets to N | calculate:  <br> t assets ratio  <br> orth ratio.  <br> Bala  <br> Rs.  <br> $1,00,000$  <br> 10,000  <br> 40,000  <br> 80,000  <br> 40,000  <br> 30,000  <br> $3,00,000$  | o and <br> nce Sheet <br> Assets <br> Goodwill <br> Machinery <br> Stock <br> Debtors <br> Furniture <br> Cash | Rs. 60, 1.00, 30, 70, 10, 30, 3,00 | 000 | 5 | 3 | 5 | 10 |
|  | OR |  |  |  |  |  |  |  |  |


| 6. c) | Differentiate Liquidity ratios and leverage ratios. |  |  |  | 5 | 4 | 5 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6. d) | The Balance Sheet of ABC Limited as on 31-03-2018 was as follows: |  |  |  | 5 | 3 | 5 | 11 |
|  | Liabilities | Amount (₹) | Assets | Amount (₹) |  |  |  |  |
|  | Equity Share Capital | 1,40,000 | Plant and | 1,24,000 |  |  |  |  |
|  | Reserves and Surplus | 1,28,000 | Machinery | 1,30,000 |  |  |  |  |
|  | Debentures | 1,32,000 | Land and | 26,000 |  |  |  |  |
|  | Creditors | 26,000 | Buildings | 2,000 |  |  |  |  |
|  | Bank overdraft | 4,000 | Furniture \& | 22,000 |  |  |  |  |
|  | Provision for Taxation: | 6,000 | Fixtures | 4,000 |  |  |  |  |
|  | Outstanding Expenses | 2,000 | Stock | 12,000 |  |  |  |  |
|  | Bills payable | 2,000 | Debtors | 65,000 |  |  |  |  |
|  |  |  | Investments | 55,000 |  |  |  |  |
|  |  | 440,000 | (Short-term) <br> Cash <br> Cash at Bank | 440,000 |  |  |  |  |
|  | From the above, compute and interpret <br> a) Current Ratio b) Quick Ratio c) Absolute Liquid Ratio d) Debt-Equity Ratio e) Proprietary Ratio. |  |  |  |  |  |  |  |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome
(Autonomous)
MR-21

## B.Tech. III Semester End Examinations <br> (Model Question Paper)

Course Title: FUNDAMENTALS OF DATA STRUCTURES
Course Code: CS302PC
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)

| $\text { Part-A }(10 \times 2=20 \text { Marks })$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q. No. | Stem of the Question | M | L | CO | PO |
| Unit-I |  |  |  |  |  |
| 1. a) | Define a Data Structure. What are the different types of Data Structures? | 2 | 1 | 1 | 1,2 |
| 1.b) | List out the advantages and disadvantages of using a linked list | 2 | 1 | 1 | 1,2 |
| Unit-II |  |  |  |  |  |
| 1. c) | Define Hashing. Write the importance of hashing. | 2 | 2 | 2 | 1,2 |
| 1. d) | What are the different collision resolution techniques? | 2 | 1 | 2 | 1,2 |
| Unit-III |  |  |  |  |  |
| 1.e) | Define binary tree. State the properties of a binary tree | 2 | 2 | 3 | 1,2 |
| 1.f) | What is mean by balanced trees? What are the categories of AVL rotations? | 2 | 2 | 3 | 1,2 |
| Unit-IV |  |  |  |  |  |
| 1.g) | What do you mean by internal and external sorting? | 2 | 1 | 4 | 1,2 |
| 1.h) | Define a Graph. What are different Graph traversals? | 2 | 1 | 4 | 1,2 |
| Unit-V |  |  |  |  |  |
| 1. i) | What is Pattern matching. List the Pattern matching Algorithms | 2 | 1 | 5 | 1,2 |
| 1. j) | Differentiate Compressed Tries and Suffix Tries | 2 | 1 | 5 | 1,2 |

Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 2. a) | What is stack? Write an algorithm for the basic operations of stack? | 5 | 1 | 1 | 1,2 |
| 2. b) | Write a C program for Queues using arrays. | 5 | 3 | 1 | $\begin{aligned} & 3, \\ & 12 \end{aligned}$ |
| OR |  |  |  |  |  |
| 2. c) | Convert following arithmetic infix expression into postfix by using stack : $\mathrm{A} *(\mathrm{~B}+\mathrm{C})+(\mathrm{D} / \mathrm{E}) * \mathrm{~F}+\mathrm{H}-\mathrm{I}$ | 5 | 2 | 1 | $\begin{aligned} & 3, \\ & 12 \\ & \hline \end{aligned}$ |
| 2. d) | Explain evaluation of postfix expression with an example | 5 | 2 | 1 | 1,2 |
| Unit-II |  |  |  |  |  |
| 3. a) | What is skip list. Explain the operations of the skip list representation with suitable examples. | 5 | 2 | 2 | 1 |
| 3. b) | Write about Double Hashing and Rehashing with examples | 5 | 1 | 2 | 1,2 |
| OR |  |  |  |  |  |
| 3. c) | What is collision? Explain Quadratic probing with example | 5 | 2 | 2 | 1,2 |
| 3. d) | What is Hashing? Explain Extendable hashing technique with example. | 5 | 1 | 2 | 1,2 |
| Unit-III |  |  |  |  |  |
| 4. a) | Construct a Binary Search tree using the elements $43,10,79,90,12,54$, $11,9,50,85,100,62$ | 4 | 4 | 3 | 1,2 |
| 4. b) | Construct a binary tree having the following traversal sequences: <br> Preorder traversal: A B C D E F G H I <br> Inorder traversal: B C A E D G H F I | 6 | 4 | 3 | 1,2 |
| OR |  |  |  |  |  |
| 4. c) | What is AVL Tree. Write the sequence of steps to construct AVL tree. | 5 | 1 | 3 | 1,2 |
| 4. d) | Construct AVL tree for the following data $21,26,30,9,4,14,28,18,15,10,2,3,7$ | 5 | 2 | 3 | 3 |
| Unit-IV |  |  |  |  |  |
| 5. a) | Define a Graph. Explain Adjacency matrix representation of a Graph with an example. | 4 | 1 | 4 | 1,2 |
| 5. b) | What are the different graph traversing techniques explain with example. | 6 | 3 | 4 | $\begin{aligned} & 3, \\ & 12 \\ & \hline \end{aligned}$ |
| OR |  |  |  |  |  |
| 5.c) | Write an algorithm for Heap sort. | 4 | 2 | 4 | 3 |
| 5.d) | Write a C program for Merge Sort | 6 | 2 | 4 | 3 |
| Unit-V |  |  |  |  |  |
| 6. a) | Write a Brute force pattern matching algorithm | 5 | 1 | 5 | 1,2 |
| 6. b) | What are tries and briefly explain their types. | 5 | 2 | 5 | 1,2 |
| OR |  |  |  |  |  |
| 6. c) | Explain Knuth-Morris-Pratt Algorithm with example. | 6 | 1 | 5 | 1,2 |
| 6. d) | Explain in detail about standard tries | 4 | 2 | 5 | 1,2 |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

# B.Tech. III Semester End Examinations 

(Model Question Paper)

## Course Title: Introduction to Python programming

Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)


Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 2. a) | Explain various Data Types in Python with examples. | 5 | 2 | 1 | 1 |
| 2. b) | Build a Python program that reads four integers from user, prints them with a single print statement, without any space or newline between/after the values. | 5 | 4 | 2 | 5 |
| OR |  |  |  |  |  |
| 2. c) | Illustrate the different types of Repetition Structures / control flow statements available in Python with flowcharts. | 5 | 2 | 2 | 5 |
| 2. d) | Build a python script to print the following pattern. | 5 | 4 | 2 | 5 |
| Unit-II |  |  |  |  |  |
| 3. a) | Classify between lists and tuples in Python. | 5 | 2 | 2 | 2 |
| 3. b) | Illustrate Python script to find the square root of a number without using built-in functions. | 5 | 2 | 3 | 5 |
| OR |  |  |  |  |  |
| 3. c) | Demonstrate Python sets. | 5 | 1 | 2 | 2 |
| 3.d) | Explain about Python Dictionaries. | 5 | 2 | 2 | 2 |
| Unit-III |  |  |  |  |  |
| 4. a) | Outline how to create, raise and handle user defined exceptions in python. | 5 | 2 | 2 | 2 |
| 4. b) | What happens if except clause is written without any Exception type? Explain with an example. | 5 | 1 | 3 | 5 |
| OR |  |  |  |  |  |
| 4. c) | What is Module in Python? Explain, how can you use Modules in your program explain with an example code. | 5 | 1 | 2 | 2 |
| 4. d) | Explain different function prototypes with suitable examples. | 5 | 2 | 3 | 5 |
| Unit-IV |  |  |  |  |  |
| 5. a) | Discuss the following methods associated with the file object a. read() b. readline() c. readlines() <br> d. tell() <br> e. $\operatorname{seek}()$ | 5 | 4 | 2 | 5 |
| 5. b) | Discuss a program to demonstrate the Overriding of the Base Class method in the Derived Class. | 5 | 4 | 4 | 2 |
| OR |  |  |  |  |  |
| 5.c) | Demonstrate implementation of hierarchical inheritance in Python, with a program. | 5 | 2 | 4 | 2 |
| 5. d) | Outline Multiple Inheritance with Method Overriding with an example. | 5 | 2 | 4 | 5 |
| Unit-V |  |  |  |  |  |
| 6. a) | How to use tkinter module? Write a python program to create a window with title | 5 | 1 | 5 | 2 |
| 6. b) | Build a python program to display Tkinter Widgets Button and Label | 5 | 4 | 5 | 2 |
| OR |  |  |  |  |  |
| 6. c) | Build a python program that creates a GUI with a text box, OK Button and QUIT button. On clicking OK the text entered in text box is to be printed in python shell, on clicking QUIT the program should terminate. | 5 | 4 | 2 | 5 |
| 6. d) | Create a Calculator program in python for performing addition using tkinter widgets | 5 | 6 | 5 | 2 |

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY
(Autonomous)
MR-21

## B.Tech. III Semester End Examinations (Model Question Paper)

Course Title: Discrete Structures
Time: 3 hours

Course Code: CS307PC
Max. Marks: 70

## Note: Answer ALL Questions <br> Part-A (10 x $2=20$ Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 1. a) | Explain about the connectives? | 2 | 4 | 1 | 1,2 |
| 1. b) | What are the two types of Quantifiers? | 2 | 2 | 1 | 1 |
| Unit-II |  |  |  |  |  |
| 1.c) | Illustrate Union an intersection of sets with suitable example. | 2 | 3 | 2 | 1,2 |
| 1.d) | What are the properties of Binary Relation? | 2 | 1 | 2 | 1 |
| Unit-III |  |  |  |  |  |
| 1. e) | What is Mathematical Induction? | 2 | 2 | 3 | 1,2 |
| 1.f) | In how many ways can the letters of the word 'LEADER' be arranged? | 2 | 1 | 3 | 1 |
| Unit-IV |  |  |  |  |  |
| 1.g) | What is the probability that when two dice are rolled, the sum of the numbers on the two dice is 7? | 2 | 1 | 3 | 1,2 |
| 1.h) | What is Bayes theorem? | 2 | 1 | 4 | 1 |
| Unit-V |  |  |  |  |  |
| 1. i) | What is a Bipartite Graph? | 2 | 1 | 5 | 1 |
| 1.j) | What is Eulers circuit? | 2 | 1 | 5 | 1 |

## Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 2.a) | Use truth table to show that (1P^(1Q^R) $\mathrm{l}^{(Q \wedge R}$ ) $\vee(\mathrm{P} \wedge \mathrm{R}) \Leftrightarrow \mathrm{R}$ | 5 | 2 | 1 | 1 |
| 2.b) | Show that $\sim \mathrm{p}$ follows from the set of premises $(\mathrm{r} \rightarrow \sim \mathrm{q}), \mathrm{r} \vee \mathrm{s}, \mathrm{s} \rightarrow \sim \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q}$ using indirect method of proof | 5 | 3 | 1 | 1,2 |
| OR |  |  |  |  |  |
| 2. c) | Construct the truth table of compound preposition (p v lq) $->(\mathrm{p} \wedge \mathrm{q})$ | 5 | 2 | 1 | 1 |
| 2.d) | Show that the following implication without constructing truth table (p $\rightarrow \mathrm{q}) \rightarrow \mathrm{q} \Rightarrow(\mathrm{p} V \mathrm{q})$ | 5 | 2 | 1 | 1 |
| Unit-II |  |  |  |  |  |
| 3. a) | A relation R on $A$ is reflexive if and only if $R^{-1}$ is reflexive. | 5 | 2 | 2 | 1 |
| 3. b) | Show that congruence modulo m is an equivalence relation on integers.. | 5 | 4 | 2 | 1 |
| OR |  |  |  |  |  |
| 3. c) | What is Equivalence Relation? Explain with example? | 5 | 1 | 2 | 1 |
| 3.d) | Draw the Hasse diagram for $\mathrm{X}=\{2,3,6,24,36,48\}$ and relation $\leq$ be such that $\mathrm{x} \leq \mathrm{y}$, if x divides y . | 5 | 3 | 2 | 1,2 |
| Unit-III |  |  |  |  |  |
| 4. a) | Prove by Mathematical induction that $6^{\mathrm{n+2}}+7^{2 \mathrm{n+1}}$ is divisible by 43 for each positive integer n . | 5 | 4 | 3 | 1,2 |
| 4. b) | Obtain recurrence relation for towers of Hanoi problem? | 5 | 3 | 3 | 1,2 |
| OR |  |  |  |  |  |
| 4. c) | Prove that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$.For all positive integers $n$. | 5 | 4 | 3 | 1,2 |
| 4.d) | Consider the function defined recursively as follows: $\mathrm{f}(0)=1, \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+3$ Prove that $\mathrm{f}(\mathrm{n})=3 \mathrm{n}+1$ | 5 | 3 | 3 | 1 |
| Unit-IV |  |  |  |  |  |
| 5. a) | Find the number of arrangements of letters "MISSISSIPPI". | 5 | 3 | 4 | 1,2 |
| 5. b) | Solve the recurrence relation $a_{n}-9 a_{n-1}+20 a_{n-2}=0$ with $a_{0}=-3, a_{1}=-10$ using generating functions | 5 | 4 | 4 | 1,2,3 |
| OR |  |  |  |  |  |
| 5. c) | Solve the recurrence relation $\mathrm{a}_{n}-7 \mathrm{a}_{n-1}+12 a_{n-2}=0$ for $\mathrm{n} \geq 2$ where $\mathrm{a}_{0}=1, \mathrm{a}_{1}=2$. | 5 | 4 | 4 | 1 |
| 5.d) | Find the general expression for a solution to the recurrence relation an-5an-1+6an-2 $=\mathrm{n}(\mathrm{n}-1)$ forn $>2$ | 5 | 3 | 4 | 1 |
| Unit-V |  |  |  |  |  |
| 6. a) | State and prove fundamental theorem of graph theory. | 5 | 4 | 5 | 1,2 |
| 6. b) | Explain Breadth First Search Algorithm with an example | 5 | 4 | 5 | 1,2 |
| OR |  |  |  |  |  |
| 6. c) | Prove that a complete graph $\mathrm{K}_{\mathrm{n}}$ is planar if and only if $n \leq 4$. | 5 | 3 | 5 | 1 |
| 6.d) | Explain the following with examples (a) Isomorphism and sub graphs (b) Planar Graph | 5 | 4 | 5 | 1,2 |

[^0]
## B.Tech. III Semester End Examinations <br> (Model Question Paper)

Course Title: Computer Organization and Architecture
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20 \mathrm{Marks}$ )

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 1. a) | Define computer organization and architecture. | 2 | 1 | 2 | 1 |
| 1.b) | List out the logical micro-operation along with example. | 2 | 1 | 1 | 1 |
| Unit-II |  |  |  |  |  |
| 1. c) | "Microprogrammed control unit organization slower the operation of computer" Justify | 2 | 2 | 2 | 2 |
| 1. d) | Differentiate between ADD and ADDC instructions in computer. | 2 | 2 | 1 | 2 |
| Unit-III |  |  |  |  |  |
| 1.e) | Convert (235) ${ }_{10}=(\quad)_{2}$ | 2 | 3 | 5 | 2 |
| 1.f) | Write the steps in floating point addition. | 2 | 2 | 5 | 1 |
| Unit-IV |  |  |  |  |  |
| 1.g) | Classify the modes of data transfer. | 2 | 1 | 3 | 1 |
| 1. h) | Give the role of associative memory in computer. | 2 | 1 | 3 | 1 |
| Unit-V |  |  |  |  |  |
| 1. i) | Explain the significance of pipelining. | 2 | 2 | 4 | 2 |
| 1. j) | What are the characteristics of multiprocessors. | 2 | 1 | 4 | 1 |

Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit-I |  |  |  |  |  |
| 2. a) | Explain the basic functional parts of the digital computer. | 5 | 1 | 2 | 1 |
| 2.b) | Discuss about the common bus system configuration using multiplexer approach. | 5 | 2 | 2 | 1 |


| OR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.c) | Differentiate between computer organization and architecture. | 5 | 2 | 2 | 1 |
| 2. d) | Explain the memory-reference instruction with some RTL statements. | 5 | 2 | 2 | 1 |
| Unit-II |  |  |  |  |  |
| 3. a) | With neat diagram, explain the operation of address sequencing in microprogram control organization. | 5 | 1 | 1 | 3 |
| 3.b) | Explain the general register organization in digital computer. | 5 | 1 | 1 | 1 |

OR

| 3. c) | Explain the basic blocks in micro programmed control organization. | 5 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. d) | Discuss the various addressing modes in digital computer architecture. | 5 | 1 | 1 | 1 |


| Unit-III |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: |
| 4. a) | Perform $\mathrm{X}-\mathrm{Y}$ when $\mathrm{X}=1010101$ and $\mathrm{Y}=110011$ using 2's complement approach. | 5 | 3 | 5 | 2 |  |
| 4. b) | With neat diagram, explain the decimal arithmetic unit. | 5 | 2 | 5 | 2 |  |


| OR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4.c) | With the help example, explain the classification of fixed-point representation. | 5 | 2 | 5 | 1 |
| 4. d) | Draw and explain the basic steps in Booth's multiplication algorithm. | 5 | 3 | 5 | 3 |
| Unit-IV |  |  |  |  |  |
| 5. a) | With neat diagram, explain the role DMA in digital computer organization. | 5 | 1 | 3 | 1 |
| 5. b) | Describe the various cache mapping techniques in cache memory organization. | 5 | 1 | 3 | 2 |
| OR |  |  |  |  |  |
| 5. c) | Explain about input-out interfaces in digital computer. | 5 | 1 | 3 | 1 |
| 5. d) | Draw and explain the memory hierarchy. | 5 | 1 | 3 | 1 |

## Unit-V

| 6. a) | Compare and contrast RISC versus CISC architectures. | 5 | 2 | 4 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 6. b) | How to avoid the cache coherence problem in multiprocessor organization. Explain. | 5 | 4 | 4 | 5 |
|  | OR | 5 | 1 | 4 | 12 |
| 6.c) | Explain about instruction pipelining. | 5 | 2 | 4 | 12 |
| 6. d) | Give the significance of Array processors along with its applications. |  |  |  |  |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome


[^0]:    M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

