B.Tech. III Semester End Examinations

(Model Question Paper)
Course Title: Probability Distributions and Numerical Methods
Course Code: MA303BS
Max. Marks: 70
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x 2 = 20 Marks)

Q. No.	Stem of the Question						M	L	CO	PO
						Unit-I				
1. a)	What is the probability that a card drawn at random from the pack of playing cards may be either a queen or a king						2	1	1	1
1. b)	Calculate expectation of X , if the probability distribution of the random variable X is given by						2	3	1	2
	x	-1		1		3				
	f	0.3	0.1	0.1	0.3	0.2				
Unit-II										
1. c)	Solve for the values of $\mathrm{n} \& \mathrm{p}$ of the binomial distribution for which the mean is 4 and variance is 3						2	3	2	1
1.d)	If a random variable has a poisson distribution such that $\mathrm{P}(\mathrm{x}=1)=\mathrm{P}(\mathrm{x}=2)$ find the Mean of the Poisson distribution.						2	1	2	2
Unit-III										
1.e)	Explain type I error						2	5	3	2
1.f)	write the test statistic for large sample single mean						2	1	3	2
Unit-IV										
1. g)	Mention the first approximation of one of the roots $f(x)=0$ by regula falsi method under the conditions that $\mathrm{f}(\mathrm{a}) \& \mathrm{f}(\mathrm{b})$ have opposite signs and $\mathrm{a}<\mathrm{b}$						2	1	4	1
1.h)	what is the condition for the convergence of successive approximation method						2	1	4	
Unit-V										
1. i)	$\mathrm{f}(\mathrm{x})$ is given by									
	x			1						
	$\mathrm{f}(\mathrm{x})$	1	0.8	0.5			2	3	5	1
	Then use Trapizoidal rule to calculate $\int_{0}^{1} f(x) d x$									
1.j)	What is the Simpsons $3 / 8$ rule to evaluate $\int_{a}^{b} f(x) d x$						2	1	5	1

Part-B ($5 \times 10=50$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2.a)	Of the 3 men the chances that a politician a businessman or an academician will be appointed as a vice chancellor of a university are $0.5,0.3,0.2$ respectively. Probability that research is promoted by these persons if they are appointed as vice chancellor are $0.3,0.7,0.8$ respectively. If research is promoted, what is the probability that VC is an academician.	5	1	1	2
2.b)	Two aeroplanes bomb a target in succession. The probability of each correctly scoring a hit is 0.3 and 0.2 respectively. The second will bomb only if the first misses the target. Find the probability that i) target is hit ii) both fail to score hit	5	1	1	2
	OR				
2. c)	A player wins if he gets 5 on a single throw of a die, he loses if he gets 2 or 4 . If he wins, he gets ₹ 50 , if he loses he gets ₹ 10 , otherwise he has to pay ₹ 15 . Find the value of the game to the player. Is the game favourable to the player?	5	1	1	2
2.d)	If a random variable has the probability density function $\begin{array}{rlrl} f(x) & =\mathrm{k}\left(x^{2}-1\right), & -1 \leq \mathrm{x} \leq 3 . \\ & =0 & & \text { elsewhere } \end{array}$	5	1	1	2

M: Marks; L: Bloom’s Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations
 (Model Question Paper)

Course Title: Analog and Digital Electronics
Time: 3 hours

> Note: Answer ALL Questions
> Part-A $(10 \times 2=20$ Marks $)$

$\begin{gathered} \hline \mathbf{Q} . \\ \text { No. } \end{gathered}$	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	What is meant by Zener Breakdown?	2	2	1	1
1. b)	What is diffusion capacitance?	2	1	1	1
Unit-II					
1. c)	Write any two differences between CB and CE configurations?	2	1	2	1
1. d)	What is the need of transistor biasing?	2	2	2	1
Unit-III					
1.e)	Write any two differences between BJT and JFET?	2	2	3	1
1.f)	Draw the diagram of CMOS NOT gate?	2	1	5	2
Unit-IV					
1.g)	Write the logic of half adder with Boolean functions?	2	1	4	2
1. h)	Draw the 4×1 multiplexer?	2	1	4	1
Unit-V					
1. i)	Define T Flip Flop with the help of characteristic equation?	2	1	4	1
1. j)	Differentiate Mealy Machine and Moore Machine?	,	2	4	2

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	Explain the operation of PN Junction Diode with the help of VI characteristics?	5	2	1	1
2. b)	Draw the diagram of bridge rectifier and derive the efficiency and ripple factor?	5	3	1	2
OR					
2. c)	Explain the operation of Photo Diode with the help of VI characteristics?	5	2	1	1
2. d)	Compare half wave and full wave rectifiers?	5	3	1	2
Unit-II					
3. a)	Draw CB configuration of transistor and explain its input and output characteristics?	5	1	2	1
3.b)	Calculate operating point for the fixed bias circuit?	5	3	2	2
OR					
3.c)	Draw CE configuration of transistor and explain its input and output characteristics?	5	2	2	1
3. d)	Solve the expression for stability factor in voltage divider bias circuit?	5	3	2	2
Unit-III					
4. a)	Explain the JFET operation with the help of diagrams?	5	2	1	1
4. b)	Draw CMOS NOR gate and explain with neat diagram.	5	3	5	2
OR					
4.c)	Draw the Drain and Transfer characteristics of Depletion MOSFET and explain with neat diagrams?	5	2	1	1
4. d)	Realize XOR gate using NAND gates?	5	2	5	3

Unit-IV

Unit-IV					
5. a)	Derive the logic expression for full adder with the help of truth table?	5	3	4	2
5. b)	Obtain minimal POS expression for the Boolean function. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,2,3,4,6,9,10)+\mathrm{d}(7,11,13,15)$.draw the circuit using 2 input NAND gates	5	1	3	2
OR					
5.c)	Design 2 Bit Comparator and draw logic diagram?	5	3	4	3
5. d)	Explain the differences between canonical SoP and canonical PoS with suitable example	5	2	3	2
Unit-V					
6. a)	Draw the diagram of RS flip flop and explain the operation with truth table	4	2	4	2
6. b)	Design and develop Mod-10 Asynchronous counter using T- FlipFlop	6	6	4	3
OR					
6. c)	Design Mod 6 synchronous counter?	6	6	4	3
6.d)	Explain PISO shift register with the help of neat diagram	4	2	4	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations
 (Model Question Paper)

Course Title: Data Structures
Time: 3 hours

Course Code: CS301PC
Max. Marks: 70

Note: Answer ALL Questions
 Part-A (10 x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Define a Data Structure. What are the different types of Data Structures?	2	1	1	1,2
1.b)	Define ADT. Write the operations on data structures.	2	1	1	1,2
Unit-II					
1. c)	Differentiate between Single Linked list and Doubly Linked list	2	2	2	1,2
1.d)	Write the node structure in a Circular Linked list	2	2	2	1,2
Unit-III					
1. e)	What is a Binary tree? Mention the tree traversals	2	1	3	1,2
1.f)	Write the properties of Binary Search Tree.	2	2	3	1,2
Unit-IV					
1.g)	Define a Graph. What are different Graph traversals?	2	1	4	1,2
1.h)	Differentiate between Linear Search and Binary Search.	2	2	4	1,2
Unit-V					
1. i)	Give example of Folding Hash method	2	2	5	1,2
1.j)	What are the different collision resolution techniques?	2	1	5	1,2

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2.a)	Explain evaluation of postfix expression with an example	4	2	1	1,2
2.b)	Write a C program for Queues using arrays.	6	3	1	$\begin{gathered} 3, \\ 12 \end{gathered}$
OR					
2.c)	What is stack? What are the basic operations associated with stack?	5	1	1	1,2
2.d)	Convert following arithmetic infix expression into postfix by using stack : $\mathrm{A} *(\mathrm{~b}+\mathrm{c})+(\mathrm{b} / \mathrm{d}) * \mathrm{a}+\mathrm{z} * \mathrm{u}$	5	2	1	$\begin{aligned} & 3, \\ & 12 \end{aligned}$
Unit-II					
3.a)	Write the algorithm for insertion of a new node as last node in Doubly linked list.	4	2	2	3
3.b)	Implement insert() and delete() functions in Queues using Single linked list	6	3	2	$\begin{gathered} 3, \\ 12 \end{gathered}$
OR					
3.c)	Implement push() and pop() functions in Stacks using Single linked list	6	3	2	$\begin{gathered} 3, \\ 12 \end{gathered}$
3.d)	Write the algorithm for insertion of a new node as middle node in Single linked list	4	2	2	3
Unit-III					
4.a)	Construct a Binary Search tree using the elements 14,25,51,12,21,45,11,10	4	4	3	1,2
4.b)	Construct a binary tree having the following traversal sequences: Preorder traversal: A B C D E F G H I Inorder traversal: B C A E D G H F I	6	4	3	1,2
OR					
4.c)	Define a Binary Tree. Explain the Binary tree representations with an example	5	1	3	1,2

| | Write a brief note on Traversing a binary tree. Find the preorder and
 postorder traversal of following tree.
 Root | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome
(Autonomous)
MR-21

B.Tech. III Semester End Examinations (Model Question Paper)

Course Title: Object Oriented Programming using C++
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	What are the features of Object Oriented Programming	2	1	1	1
1. b)	Differentiate between structure and class in C++	3	2	1	1
Unit-II					
1.c)	Discuss about 'this' pointer with an example	2	1	2	1
1. d)	Define a constructor and list of different types of constructors	3	1	2	1
Unit-III					
1. e)	Define Inheritance	2	1	3	1
1.f)	Write a short on virtual destructor.	3	2	3	1,2
Unit-IV					
1. g)	Draw the Stream Class Hierarchy	2	2	4	1,2
1. h)	List out different file position pointers	3	1	4	1,2,12
Unit-V					
1. i)	List out the advantages of Exception handling	2	1	5	1,2,12
1.j)	What is Stack Unwinding in C++	3	2	5	1,2,12

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	Explain about different paradigms for problem solving	5	2	1	1
2. b)	List out different String functions in C++. Write a C++ program to implement all the string functions.	5	2	1	1
OR					
2. c)	Difference between Procedural Programming and Object-Oriented Programming	5	2	1	1
2. d)	Discuss about dynamic memory of allocation with an example program.	5	2	1	1
Unit-II					
3. a)	Explain about different access specifiers in $\mathrm{C}++$ with an example program	5	2	2	1,2
3. b)	Discuss about constructor Overloading in C++	5	2	2	1,2
OR					
3. c)	What is the use of friend function in $\mathrm{C}++$. Write a program to find greatest of three numbers using friend function	5	3	2	1,2
3. d)	Write a short notes on static variables and static members of a class	5	2	2	1,2
Unit-III					
4. a)	Explain about different modes of Inheritance with an example programs	5	2	3	1,2,12
4. b)	Differentiate between Late binding and Early Binding	5	2	3	1,2,12
OR					
4. c)	Discuss in detail about different types of Inheritance with an example programs.	5	2	3	1,2,12
4. d)	What is pure virtual function. Write a program to implement pure virtual function.	5	3	3	1,2
Unit-IV					
5. a)	Write a C++ program to read and write data into a file.	5	3	4	1,2,12
5. b)	Explain about error handling functions with a program	5	2	4	1,2,12
OR					
5. c)	Write a C++ program for Complex number subtraction using operator overloading	5	3	4	1,2,12
5. d)	Write a C++ program for Overloading Binary Operator using a Friend function	5	3	4	1,2
Unit-V					
6. a)	Illustrate Rethrowing exceptions with an example	5	2	5	1,2,12
6. b)	Explain about Exception Specifications with an example program	5	2	5	1,2
OR					
6. c)	Define a Template and explain about Function template with an example program	5	2	5	1,2,12
6. d)	Write a C++ program to implement Multiple catch blocks in a single try block.	5	2	5	1,2,12

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome
(Autonomous)
MR-21

B.Tech. III Semester End Examinations (Model Question Paper)

Course Title: Discrete Mathematics
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Explain different logical connectives in mathematical logic	2	2	1	1,2,3
1. b)	Verify the following formulas are well formed formulas are not? (i) $\mathrm{P} \rightarrow(\mathrm{PVQ})$ (ii) $\quad(\mathrm{P} \rightarrow(\sim \mathrm{P})) \rightarrow \sim \mathrm{P}$ (iii) $\quad((\sim \mathrm{Q} \wedge \mathrm{P}) \wedge \mathrm{Q})$	2	3	1	$\begin{gathered} 1,2,3 \\ , 4 \end{gathered}$
Unit-II					
1. c)	If $A=\{1,2,3\}, B=\{4,5\}$ find i) AXB ii) BXA	2	3	2	1,2,3
1. d)	Prove that $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \mathrm{U}(\mathrm{A}-\mathrm{C})$	2	3	2	1,3,4
Unit-III					
1.e)	Differentiate between Mathematical Induction and Strong Induction	2	2	3	1,2,3
1.f)	Define Sum Rule and Product Rule.	2	1	3	1,3,4
Unit-IV					
1.g)	Explain the principle of inclusion - exclusion?	2	2	4	1,2,3
1. h)	Solve the recurrence relation an= nan-1 for $\mathrm{n} \geq 1$ where a $0=1$	2	3	4	1,3,4
Unit-V					
1. i)	Define Spanning tree?	2	1	5	1,2,3
1.j)	Is K2,3 is a complete bipartite Graph?	2	2	5	1,3,4

Part-B (5x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	Show that $\sim \mathrm{p}$ follows from the set of premises $(\mathrm{r} \rightarrow \sim \mathrm{q}), \mathrm{rVs}, \mathrm{s} \rightarrow \sim \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q}$ using indirect method of proof	5	3	1	1,2,3
2. b)	Show that the following implication without constructing truth table (i) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q} \Rightarrow(\mathrm{pVq})$ (ii) $\mathrm{p} \rightarrow \mathrm{q} \Rightarrow \mathrm{p} \rightarrow \mathrm{p} \Lambda \mathrm{q}$	5	3	1	1,2,3,4
OR					
2. c)	a) Rephrase the statement formula $(P \rightarrow(Q \wedge R)) \wedge(\neg P \rightarrow(\neg Q \wedge \neg R))$ as principal conjunctive normal form. Also define PCNF and PDNF.	5	3	1	1,2,
2. d)	b) "If there was a ball game, then traveling was difficult. If they arrived on time, then traveling was not difficult. They arrived on time. Therefore, there was no ball game." Show that these statements constitute a valid argument.	5	2	1	1,2,3,4
Unit-II					
3. a)	Find all the properties that satisfies for the following algebraic systems under the binary operations ' X ' and ' + '. (a) Odd integer (b) All positive integers	5	2	2	1,2,3
3. b)	Draw the Hasse diagram for $\mathrm{X}=\{2,3,6,24,36,48$ - and relation $\leq\}$ be such that $\mathrm{x}<\mathrm{y}$, if x divides y .	5	3	2	1,3,4

OR

3. c)	Prove that a relation R on A is symmetric if and only if $R=R^{-1}$	5	2	2	1,2,3
3. d)	A function f is defined as $f(x)=2 x-3$ on a set R of real numbers. Check whether the function f is bijective or not, if so, find inverse of the function. And hence compute $f^{-1} o f$.	5	2	2	1,3,4
Unit-III					
4. a)	Use mathematical induction to prove that $\mathbf{1 + 2 + 3 + \ldots + n = n (n + 1) / 2}$ for all positive integers n.	5	3	3	1,2,3
4. b)	Prove that $\mathbf{1}^{2}+\mathbf{2}^{2}+3^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$ using mathematical induction for all positive integers n.	5	3	3	1,3,4

OR

4. c)	State Pigeon hole principle. Make use of it, find how many people were born on the same month among 200 people.	5	2	3	$1,2,3$
	How many bit strings of length 8 contain i. \quad exactly five 1's	5	3	3	$1,3,4$
ii. an equal number of 0's and 1's iii. at least four 1's iv. at least three 1's and at least three 0's					

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

