B.Tech. III Semester End Examinations

(Model Question Paper)

Course Title: Electronic Devices and Circuits
Time: 3 hours

Course Code: EC301PC
Max. Marks: 70

Note: Answer ALL Questions
Part-A (10 x 2 = 20 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
U. Unit-I					
1. a)	Write the Applications of Diode	2	1	1	1
1. b)	Differentiate between Clipper and Clamper	2	2	1	3
Unit-II					
1.c)	What is Early Effect	2	1	1	1
1.d)	Explain the concept of Thermal runaway in detail	2	2	1	3
Unit-III					
1.e)	Distinguish between avalanche and Zener mechanisms of a diode	2	1	1	3
1.f)	How FET work as a Voltage variable Resistor	2	2	2	2
Unit-IV					
1.g)	Draw the small signal low frequency h-parameter model of a CB Transistor	2	2	4	5
1.h)	Why CC Amplifier is called Emitter Follower	2	2	4	5
Unit-V					
1. i)	What are the advantages of FET over BJT	2	1	4	1
1.j)	Draw the Drain characteristics of E-MOSFET	2	1	4	1

Part-B ($5 \times 10=50 \mathrm{Marks}$)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2.a)	Design a negative Clipper Circuit with Reference voltage is 3V.	6	6	2	3
2.b)	The voltage across a silicon diode at room temperature is 0.7 V when 2 mA current flows through it. If the voltage increases to 0.75 V , calculate the diode current. Assume $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$.	4	4	2	2
OR					
2.c)	Draw and explain the circuit diagram of full wave rectifier with Lsection filter	5	2	1	4
2.d)	Derive the Diffusion Capacitance in PN Junction Diode	5	4	1	1
Unit-II					
3. a)	From the transistor current components, develop the current equation of transistor.	5	6	2	3
3. b)	An NPN transistor if $\beta=50$ is used in common emitter circuit with $\mathrm{Vcc}=10 \mathrm{~V}$ and $\mathrm{Rc}=2 \mathrm{k} \Omega$. The bias is obtained by connecting $100 \mathrm{k} \Omega$ resistor from collector to base. Find the quiescent point and stability factor	5	4	3	2
OR					
3.c)	Draw and Explain the Voltage divider Bias technique and derive its stability factor S.	5	3	3	11
3.d)	Explain the Input and Output characteristics of CB configuration with neet diagram.	5	1	2	1
Unit-III					
4. a)	Explain the Construction and operation of N-Channel JFET	5	1	4	3
4.b)	Explain the construction and working of SCR	5	2	2	3
OR					
4.c)	Draw the V-I Characteristics of Tunnel diode with the help of Energy band diagram.	4	3	4	3

4.d)	An n-channel JFET has $I_{D S S}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{P}}=-2 \mathrm{~V}$. Determine the drain source resistance r_{ds} for (i) $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$. (ii) $\mathrm{V}_{\mathrm{GS}}=-0.5 \mathrm{~V}$.	4	4	3	2
Unit-IV					
5. a)	Sketch the circuit diagram of CE amplifier and explain its operation in detail	5	2	4	11
5. b)	A transistor in CB configuration circuit has the following set of ' h ' parameters. $\mathrm{h}_{\mathrm{ib}}=20 \Omega, \mathrm{~h}_{\mathrm{fb}}=0.98, \mathrm{~h}_{\mathrm{rb}}=3 \times 10-4, \mathrm{~h}_{\mathrm{ob}}=0.5 \times 10-6 \mathrm{~A} / \mathrm{V}$ Find the values R_{i}, R_{0}, A_{i} and A_{v}, if $R_{s}=600 \Omega$ and $R_{L}=5 \mathrm{k} \Omega$.	5	3	4	2
OR					
5. c)	Compare the performance of BJT as an amplifier in CE, CB, CC configuration	5	2	4	1
5.d)	Draw the Common emitter amplifier with Emitter resistor and explain its operation.	5	3	4	1
Unit-V					
6. a)	Explain the Construction and operation of Enhancement mode MOSFET	5	2	2	4
6.b)	Why CD Aplifier is Known as Source Follower. Explain in detail.	5	3	4	1
OR					
6.c)	Derive the expressions for $\mathrm{Z} \mathrm{i}, \mathrm{Zo}$ and Av for common source J-FET amplifier	6	4	4	3
6.d)	Write the differences between J-FET and MOSFET	4	3	4	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations
 (Model Question Paper)

Course Title: Network Analysis \& Transmission Lines
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)

Course Code: EC302PC

Max. Marks : 70

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Define tree and co-tree.	2	1	1	2
1. b)	Obtain the equivalent inductance in the case of series aiding inductors.	2	2	1	1,2
Unit-II					
1. c)	Derive the expression for bandwidth of a series RLC circuit.	2	3	2	1,2
1. d)	Prove that a LPF acts as an integrator for integrator for large time constants.	2	2	2	1,2
Unit-III					
1.e)	Write the symmetry and reciprocity conditions in terms of h-parameters.	2	2	3	1,2
1.f)	Write short notes on driving point functions.	2	1	3	2
Unit-IV					
1.g)	What is meant by loading of transmission lines?	2	2	4	3
1. h)	A lossless transmission line has $\mathrm{P}=\mathrm{j} 0.003 \mathrm{rad} / \mathrm{m}$. Find the phase velocity.	2	2	4	1,2
Unit-V					
1.i)	Give the significance of $\lambda / 4$ transmission line.	2	2	4	2
1. j)	Find the reflection coefficient seen when a 50 ohms line is terminated with 80 ohms load.	2	2	4	1,2

Part-B ($5 \times 10=50$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	What is an f-tieset? Explain the procedure for obtaining f-Tieset matrix.	5	2	1	1,2
2. b)	Obtain f-cutset matrix for the graph given below.	5	2	1	1,2
OR					
2. c)	Derive the expression for coupling coefficient in terms of L1, L2 and M.	5	2	1	2
2. d)	Write mesh equations for the circuit shown below.	5	3	1	1,2
Unit-II					
3. a)	Discuss the resonant characteristics of parallel RLC circuit.	5	2	2	1,2,3
3. b)	Obtain $\mathrm{v}(\mathrm{t})$ for $\mathrm{t}>0$. Assume switch was towards 40 V for long period of time.	5	3	2	1,2
OR					
3. c)	Explain and draw the step response of a second order circuit for under damped case.	5	4	2	1,2

3. d)	In the circuit shown below the switch was open for a long period of time before it is closed at $t=0$. Obtain $i_{L}(t)$ for $t>0$.	5	3	2	1,2
Unit-III					
4. a)	Determine impedance parameters for the network shown.	5	2	3	1,2
4. b)	Discuss T type attenuator.	5	2	3	3
OR					
4. c)	Write the properties of network transfer function.	4	2	3	2
4. d)	Determine h-parameters for the network shown.	6	3	3	1,2
Unit-IV					
5. a)	Derive transmission line equations.	6	3	4	1,2
5. b)	The secondary constants of a certain line are $\mathrm{P}=0.002+\mathrm{j} 0.001 / \mathrm{m}$ and $\mathrm{Z}_{0}=230-\mathrm{j} 40$ ohms. Deduce the primary constants of the line.	4	2	4	1,2
OR					
5. c)	Prove that an infinite line is identical to a line terminated with its characteristic impedance.	5	3	4	2
5. d)	Derive the condition for distortion less transmission.	5	3	4	1,2
Unit-V					
6. a)	Discuss the applications of Smith chart.	5	4	4	2
6. b)	A 100 ohms UHF line of length 1.75λ is terminated with ($60-\mathrm{j} 20$) ohms load. Using Smith chart find Reflection coefficient, SWR, and input impedance of the line.	5	3	4	1,2
OR					
6. c)	Discuss single stub matching in detail.	6	4	4	3
6. d)	The short circuit and open circuit impedances of a certain line are j 120 ohms and -j 80 ohms respectively. Find the characteristic impedance of the line and as well its electrical length.	4	3	4	1,2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations
 (Model Question Paper)

Course Title: DIGITAL SYSTEM DESIGN
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Convert 12.125 decimal into binary	1	1	1	2
1. b)	Find 1s complement of 0101110	1	1	1	2
Unit-II					
1. c)	How many cell are there in a 5 variable kmap.	1	2	2	1
1. d)	What is the general size of any multiplexer?	1	3	2	1
Unit-III					
1. e)	Write the truth table of D flip flop	1	3	3	1
1. f)	How may no. of flip flops are required to design a mod-5 counter?	1	3	3	1
Unit-IV					
1. g)	The number of flip flops required to design a machine having 6 states is		5	3	3
1. h)	What is even parity?	1	1	3	1
Unit-V					
1. i)	Which logic family is fastest.	1	2	4	1
1. j)	Define fan out	1	2	4	1

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	Perform subtraction operation using 2's complement representation (80) - (70).	5	1	1	1
2. b)	Implement EXOR gate using only 4 NAND gates.	5	3	1	3
OR					
2. c)	perform the following conversions i) Find the octal equivalent of $(73.75)_{10}$ ii) Determine the hexadecimal equivalent of (82.25)10 iii) Find the binary equivalent of (13.375)10	6	2	1	1
2. d)	Implement $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}$ using only NAND gates	4	3	1	3
Unit-II					
3. a)	Simplify the following Boolean function using product of sums $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,2,3,5,7,8,10,11,14,15)$	5	2	2	2
3. b)	Design a full adder using two half adders and one OR gate	5	3	2	4
OR					
3. c)	Simplify the Boolean function using Kmap $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,1,2,3,810,14,15)$	5	2	2	2
3. d)	Design a binary to gray code converter	5	4	2	3
Unit-III					
4. a)	Derive the characteristic equations of SR and Jk flip flops	4	2	3	1
4. b)	Draw and explain the operation of a 5 bit shift register.	6	3	3	1
OR					
4. c)	Design a twisted ring counter.	5	2	3	3
4. d)	Explain the operation of master slave JK flip flop.	5	2	3	2
Unit-IV					
5. a)	Design a mod - 5 Counter.	5	4	3	4
5. b)	Design a even paring bit generator.	5	4	3	3
OR					
5. c)	Design a sequence detector circuit to detect 1010 sequence.	6	6	3	3
5. d)	Draw mealy machine diagram for 3-bit counter.	4	5	3	1

Unit-V

6. a)	Explain the operation of TTL totem pole output gate.	5	1	4	1	
6. b)	Draw and explain CMOS transmission gate.	5	2	4	1	
OR						5

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations
 (Model Question Paper)

Course Title: Signals and Systems
Time: 3 hours

Course Code: EC304PC
Max. Marks : 70

Part-A (10 x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Check whether the signal $x(t)=t e^{-3 t} u(t)$ is energy or power or neither?	2	2	1	1,2
1. b)	Solve the integral $\int_{-\infty}^{+\infty} \delta(1-t)\left(t^{3}+4\right) d t$	2	3	1	1,2
Unit-II					
1. c)	List out the Dirichlet's conditions for the existence of Fourier series	2	4	2	1
1. d)	Prove that the compression of a signal in time domain leads an expansion in frequency domain with the help of Fourier Transform?	2	5	2	4
Unit-III					
1.e)	Verify the linearity of the system $y(t)=e^{x(t)}$?	2	2	3	2
1. f)	What are the properties of convolution?	2	1	3	1,1 2
Unit-IV					
1.g)	How the stability of a system can be found in Laplace Transform?	2	1	4	1
1. h)	What is meant by aliasing? How can you minimize it?	,	1	4	1
Unit-V					
1. i)	Distinguish between Laplace Transform and Z-Transform?	2	4	4	1
1.j)	Find the relation between convolution and correlation?	2	2	3	1,1 2

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	Prove that $\sin \left(n \omega_{0} t\right)$ and $\cos \left(m \omega_{0} t\right)$ are orthogonal with each other over the interval $\left(t_{0}, t_{0}+\frac{2 \pi}{\omega_{0}}\right)$	4	2	1	2
2. b)	A rectangular function $f(t)$ is defined by $f(t)=\left\{\begin{aligned} 1, & 0<t<\pi \\ -1, & \pi<t<2 \pi \end{aligned}\right.$ Approximate rectangular function by a finite series of sinusoidal function $\sin (r t), r=1,2,3 \ldots$. over the interval $(0,2 \pi)$. Show that as the no. of terms in approximation increases, the error decreases.	6	4	1	2
OR					
2. c)	Check whether the following signals are periodic or not? Find the period if they are periodic? i) $\quad x(n)=\cos \left(\frac{2 \pi n}{3}\right)+\sin \left(\frac{3 \pi n}{4}\right)$ ii) $\quad x(t)=\sin ^{2} t$	6	2	1	1,2
2. d)	Derive the expression for evaluating the mean square error in the approximation of the signal	4	1	1	1
Unit-II					
3. a)	 Find the Trigonometric Fourier Series of the above periodic signal.	6	2	2	2

3.b)	State and prove the Parseval's relation property of the Fourier Series	4	1	2	1
OR					
3. c)	Find the Fourier Transform of $e^{-a t} u(t)$? Also sketch the magnitude and phase spectrum	5	2	2	2
3. d)	State and prove Time differentiation and Frequency shifting properties of Fourier Transform	5	1	2	1
Unit-III					
4. a)	Convolve the signals $x_{1}(t)=e^{-2 t} u(t-2)$ and $x_{2}(t)=e^{-3 t} u(t)$?	5	3	3	1,2
4. b)	"All the ideal filters are non-causal". Justify?	5	5	3	1,4
OR					
4. c)	Check the stability and causality of LTI system is described as $\frac{d y(t)}{d t}+$ $2 y(t)=x(t)$.	4	2	3	2,3
4. d)	A causal LTI system having a frequency response $H(j \omega)=\frac{1}{(3+j \omega)}$ is producing an output $y(t)=e^{-2 t} u(t)-e^{-4 t} u(t)$ for a particular input $x(t)$. Determine $x(t)$?	6	5	3	2,3
Unit-IV					
5. a)	Find the inverse Laplace Transform of the following: $X(s)=\frac{5 s+4}{s^{2}+2 s+1} \quad \operatorname{Re}(s)>-1$	5	3	4	2,3
5. b)	Find the Laplace Transform of $x(t)=\delta(t)+3 e^{-2 t} u(t)-2 e^{-t} u(t)$. Also draw the region of convergence.	5	3	4	2,3
OR					
5. c)	$\begin{array}{ll}\text { Find the Inverse Z-Transform of } & X(Z)=\frac{Z\left(Z^{2}-4 Z+5\right)}{(z-1)(z-2)(z-3)} \\ \text { for the following ROCs i) }\|z\|>3 & \text { ii) }\|z\|<1 \begin{array}{ll}\text { iii) } 1<\|z\|<3\end{array}\end{array}$	6	3	4	2,3
5. d)	Define the Region Of Convergence of Z-Transforms and explain its Properties.	4	1	4	1
Unit-V					
6. a)	Define sampling theorem. Explain the recovery of the band limited signal from its sampled version.	5	2	4	1
6. b)	Calculate the Nyquist rate and Nyquist interval of the signal, $x(t)=3 \cos (500 \pi t)+15 \sin (200 \pi t)$	5	1	4	1,2
OR					
6. c)	Derive the relationship between Autocorrelation function and Power Spectral Density	5	4	3	1
6. d)	Prove that any arbitrary signal can be recovered from noise using cross correlation.	5	3	3	1,3

M: Marks; L: Bloom’s Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY
(Autonomous)
MR-21

B.Tech. III Semester End Examinations

(Model Question Paper)

Course Title: Probability Theory and Stochastic Processes
Time: 3 hours
Note: Answer ALL Questions
Part-A (10 x 2 = 20 Marks)

Course Code: EC305PC

Max. Marks : 70

Q. No.	Stem of the Question	M	L	CO	PO
Unit -I					
1. a)	Define probability based on Relative frequency	2	1	1	1
1. b)	Explain the classifications of Random variable with example	2	2	1	1,2
Unit-II					
1.c)	Write short notes on Moments	2	1	2	1
1. d)	Define covariance	2	1	2	1
Unit-III					
1.e)	Define Stationary random Process	2	1	3	1
1.f)	Explain Ergodic random processes	2	2	3	1,2
Unit-IV					
1.g)	State the properties of power spectral density	2	2	3	1
1.h)	The auto correlation function of a stationary random process $\mathrm{X}(\mathrm{t})$ is given by $\mathrm{R}_{x x}(\mathrm{~T})=25+4 /\left(1+6 \mathrm{~T}^{2}\right)$ find mean and variance	2	3	3	2
Unit-V					
1. i)	Define Noise Figure	2	1	4	1
1. j)	What is the relation between channel capacity and mutual information	2	2	4	1,2

Part-B (5 x 10=50 Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
2. a)	State and Prove Bayes Theorem	4	2	1	1.2
2. b)	Two fair dice are thrown independently. Three events A,B,C are respectively defined as follows: i)Odd face with first die ii) Odd face with second die iii)The sum of two numbers in the two dice is odd. Are the events A, B, C mutually independent or pair wise independent	6	3	1	1.2
OR					
2. c)	state and prove the properties of probability Distribution function	4	2	1	1,2
2. d)	A random variable X has the following probability density function $\begin{aligned} f(x) & =x & & 0<x<1 \\ & =k(2-x) & & 1 \leq x \leq 2 \\ & =0 & & \text { else where } \end{aligned}$ i) Find the value of k ii) Find $\mathrm{P}(0.2<\mathrm{x}<1.2)$ iii) Find the distribution function of X	6	3	1	1.2
Unit-II					
3. a)	State and prove the properties of Moment generating function	4	2	2	1,2
3.b)	Find the mean and variance of Poisson Distribution function	6	2	2	1,2
OR					
3.c)	Explain the statistical independence of random variables with example.	4	2	2	1,2
3. d)	Two random variables X and Y have zero mean and variance $\sigma_{\mathrm{X}}{ }^{2}=16$, $\sigma_{Y}{ }^{2}=36$ correlation coefficient is 0.5 determine the following i) The variance of the sum of X and Y ii) The variance of the difference of X and Y	6	3	2	1,2
Unit-III					
4. a)	Explain types of random process in detail.	4	2	3	1
4. b)	A random process is given as $\mathrm{X}(\mathrm{t})=\mathrm{At}$, where A is a uniformly distributed random variable on $(0,2)$. Find whether $\mathrm{X}(\mathrm{t})$ is wide sense stationary or not.	6	4	3	1,2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

B.Tech. III Semester End Examinations (Model Question Paper)

Course Title: Constitution of India
Time: 3 hours

Course Code: MC301HS
Max. Marks : 70

Note: Answer ALL Questions
Part-A (10x $2=20$ Marks)

Q. No.	Stem of the Question	M	L	CO	PO
Unit-I					
1. a)	Define Constitution of India	1	1	1	6,8
1. b)	List the drafting committee of constitution of India	1	1	1	6,8

Unit-II

1. c)	What do you mean by fundamental duties in Indian constitution	1	1	2	6,8
1. d)	List the fundamental rights.	1	1	2	6,8

Unit-III

1.e)	List the classification of directive principles of state policy.	1	1	3	6,8
1. f)	Briefly write about directive principles	1	2	3	6,8

Unit-IV					
1.g)	List out the three types of emergencies under Indian Constitution	1	1	4	6,8
1. h)	State the important amendments.	1	1	4	6,8
Unit-V					
1. i)	What is Union Public service commission?	1	1	5	6,8
1. j)	Define Election commission of India.	1	1	5	6,8

Part-B (5 x 10=50 Marks)

| Q. No. | Stem of the Question | M | L | CO | PO |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 2. a) | Give detail account on the historical background of Indian Constitution. | 5 | 1 | 1 | 6,8 |
| 2. b) | Define. Explain the importance of preamble in the implementation of constitution. | 5 | 2 | 1 | 6,8 |
| OR | OR | 5 | 3 | 1 | 6,8 |
| 2. c) | Describe the salient features of Indian Constitution. | 5 | 3 | 1 | 6,8 |
| 2. d) | Discuss in detail the fundamental right to equality. | | | | |

Unit-II							
3. a)	Explain the scope of the right to life and personal liberty.	5	2	2	6,8		
3. b)	Discuss in detail the fundamental duties of every citizen.	5	2	6,8			

OR

3. c)	Explain the needs and importance of fundamental duties of an Indian Citizen.	5	2	2	6,8
3. d)	Explain fundamental right to certain freedom	5	2	2	6,8

Unit-III

4. a)	State the Directive Principles of State Policy and explain its significance.	5	1	3	6,8
4. b)	Distinguish between fundamental rights and directive principles of state policy.	5	5	3	6,8

OR

4. c)	Discuss the views of Gandhian Principles in Directive Principles of State Policy.	5	3	3	6,8
4. d)	State the importance of directive principles of state policy.	5	1	3	6,8

Unit-IV

5. a) Explain the power of the parliament to amend the constitution referring to decided case
6. b) Describe the procedure of amendment of the constitution.

5	2	4	6,8
5	2	4	6,8

OR
5. c)

Discuss in detail the federal structure and distribution of legislative and financial
5. d) List out the effects of financial emergency.

Unit-V
6. a) Classify the role of Local Government.
6. b) Write shorts on finance commission of India

OR
6. c)

What are the important provisions relating to the Election Commission in the Indian Constitution
6. d)

List the important constitutional bodies and explain about election commission of India

5	3	4	6,8
5	1	4	6,8

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

