THE STREET

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY (Autonomous)

B.Tech. V Semester End Examinations (Electronics and Communication Engineering) (Model Question Paper)

Subject Title: Microcontrollers

Time: 3 hours

Subject Code: EC501PC Max. Marks : 60

Note: Answer ALL Questions Part-A (10 x 1 = 10 Marks)

Q. No.	Stem of the Question	M	L	CO	PO				
	Unit-I								
1. a)	List the dedicated interrupts of 8086 microprocessor.	1	1	1	1,2				
1. b)	Define macro with example.	1	1	1	1,2				
	Unit-II								
1. c)	What is the difference between microprocessor and microcontroller?	1	2	2	1,2				
1. d)	Write the structure of PSW of 8051 microcontroller.	1	1	2	1,2				
	Unit-III								
1. e)	List out the important features of the A/D converter.	1	1	3	1,2				
1. f)	What is the significance of EA pin?	1	1	3	1,2				
	Unit-IV								
1. g)	What is 'Thumb' in ARM processor?	1	1	4	1,2				
1. h)	Differentiate between CPSR and SPSR.	1	2	4	1,2				
	Unit-V								
1. i)	Write two features of Cortex processors.	1	1	5	1,2				
1. j)	Write any two applications of OMAP processors	1	1	5	1,2				

Part-B (5 x 10=50 Marks)

Part-B (5 x 10=50 Marks)									
Q. No.	Stem of the Question	M	L	CO	PO				
Unit-I									
2. a)	Explain the concept of segmented memory. What are the advantages?	5	2	1	1,2				
2. b)	Describe the implementation of pipelined process of 8086.	5	3	1	1,2				
	OR								
2. c)	Discuss the following addressing modes with examples: i) Direct ii) Register indirect iii) Base plus index iv) immediate v) Scaled Base plus index.	5	2	1	1,2				
2. d)	Write an ALP to add two16bit numbers with carry.	5	3	1	1,2				
	Unit-II	•	•	•	•				
3. a)	Explain I/O port structure of 8051 with the help of internal diagram.	5	3	2	1,2				
3. b)	List out the important futures of 8051 Microcontroller along with its applications.	5	2	2	1,2				
	OR	•		•	•				
3. c)	State various modes available for timers in 8051.	5	3	2	1,2				
3. d)	Explain how interrupts are prioritized in 8051?	5	3	2	1,2				
	Unit-III								
4. a)	Draw the interface circuit diagram of Matrix keyboard with 8051 and explain its operation in detail.	5	3	3	1,2				
4. b)	Interface a 8K RAM consecutively with microcontroller, starting with ROM interfacing at address 8000H.	5	4	3	1,2				
	OR		•		•				
4. c)	Explain the different Serial data transfer schemes used in serial communication.	5	2	3	1,2				

4. d)	Write short notes on USB.	5	2	3	1,2
	Unit-IV				
5. a)	Draw the frame format of CPSR and explain the function of each bit in detail.	5	3	4	1,2
5. b)	List out different Data processing instruction of ARM processor.	5	2	4	1,2
	OR				
5. c)	List out different Thumb instructions used in ARM processor.	5	3	4	1,2
5. d)	What is the need of branch instructions? Explain how branching take place in ARM processors.	5	3	4	1,2
	Unit-V				
6. a)	Explain Memory processing and commands used in CORTEX Processor.	5	3	5	1,2
6. b)	Explain the different applications of CORTEX Processor in detail.	5	4	5	1,2
	OR				
6. c)	Draw and explain the internal architecture of OMAP Processor.	5	3	5	1,2
6. d)	Explain the different applications of OMAP Processor in detail	5	4	5	1,2

Time: 3 hours

Subject Title: Digital Signal Processing

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY (Autonomous)

MR-22

Subject Code: EC502PC

Max. Marks : 60

B.Tech. V Semester End Examinations (Electronics and Communication Engineering)

(Model Question Paper)

Note: Answer ALL Questions $Part-A (10 \times 1 = 10 Marks)$

Q. No.	Stem of the Question	M	L	CO	PO
	Unit-I				
1. a)	Check whether the system, $y(n) = x(2n)$ is time-invariant or time variant.	1	2	1	1,2
1. b)	Find the Z- Transform of $u(-n-1)$	1	3	1	1,2
	Unit-II				
1. c)	List any two properties of DFT.	1	1	2	1
1. d)	Obtain circular convolution of $x(n) = \{1,1,2,1\}$ and $h(n) = \{3,1,2,0\}$	1	3	2	1,2
	Unit-III				
1. e)	What are the advantages and disadvantages of Chebyshev filters	1	1	3	1
1. f)	Write the expression for Butterworth analog filter transfer function	1	1	3	1
	Unit-IV				
1. g)	List three methods commonly used for designing FIR filters.	1	1	3	1
1. h)	What is the necessary and sufficient condition for the linear phase characteristic of a FIR filter?	1	1	3	1
	Unit-V				
1. i)	Find $x(3n)$, if $x(n) = \{2,1,-1,4,5\}$	1	3	4	1
1. j)	Differentiate rounding-off and truncation with example.	1	2	4	1

 $Part-B (5 \times 10 = 50 Marks)$

Q. No.	Stem of the Question	M	L	CO	PO				
	Unit-I								
2. a)	Check the Stability and Causality of the following i) $h(n) = 2^n u(n)$ ii) $y(n) = x(n^2)$	5	2	1	1,2				
2. b)	Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n) + 0.3x(n-1)$.	5	2	1	1				
	OR								
2. c)	Obtain the frequency response of the system described as, $y(n) = 0.5y(n-1) + x(n)$.	5	2	1	1,2				
2. d)	Explain briefly about digital resonator.	5	1	1	1				
	Unit-II								
3. a)	Compute the DFT of the given sequence $x(n) = \{1,2,0,4,0,3,2,1\}$ using Radix-2 Decimation-In-Frequency Fast Fourier Transform (DIF-FFT) algorithm.	5	3	2	1,2				
3. b)	Find 8-point FFT of $x(n) = [3, 2, -1, 4, 3]$	5	1	2	1				
	OR								
3. c)	State and prove any three properties of DFT	5	1	2	1				
3. d)	Find the circular convolution of $x(n) = \{2,4,1,2\}$ and $h(n) = \{1,2,3\}$	5	2	2	1,2				
	Unit-III								
4. a)	Design an analog Chebyshev filter using with a maximum passband attenuation of 2.5dB at $\Omega_p = 20 rad/sec$ and the stopband attenuation of 30dB at $\Omega_s = 50 rad/sec$.	5	4	3	1,2				
4. b)	Compare Impulse invariant and bilinear transformation techniques.	5	1	3	1				
	OR								
4. c)	Determine order and poles o lowpass Butterworth filter that has 3dB attenuation at 500 Hz and an attenuation of 30 dB at 1200Hz.	5	2	3	1,2,3				

Find the digital filter transfer function II(z) using Impulse Invariant				
Find the digital filter transfer function H(z) using Impulse Invariant Technique for $H(s) = \frac{2}{(S+1)(S+2)}$ T=1sec.	5	2	3	1,2
Unit-IV				
Design a band pass filter which approximates the ideal filter with cut-off frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is M=5. Use the Hamming window function	5	3	3	1,2,3,4
What are the desirable features of the window functions and explain the effects of it.	5	2	3	1
OR				
Distinguish between IIR and FIR Filters	5	1	3	1
Determine the coefficients of a linear phase FIR filter of length M=15 has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1; k = 0,1,2,3\\ 0; k = 4,5,6,7 \end{cases}$	5	4	3	1,2,3,4
Unit-V				
Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n)$.	5	2	4	1,2
Discuss the finite word length effects in FIR filters.	5	1	4	1
OR				
How the sampling rate conversion can be implemented? Explain briefly.	5	2	4	1,2,3
What is Round-off Noise in IIR Digital Filters? Discuss its effects in IIR filters	5	1	4	1
	Technique for $H(s) = \frac{2}{(s+1)(s+2)}$ T=1sec. Unit-IV Design a band pass filter which approximates the ideal filter with cut-off frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is M=5. Use the Hamming window function What are the desirable features of the window functions and explain the effects of it. OR Distinguish between IIR and FIR Filters Determine the coefficients of a linear phase FIR filter of length M=15 has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1; k = 0,1,2,3\\0; k = 4,5,6,7 \end{cases}$ Unit-V Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n)$. Discuss the finite word length effects in FIR filters. OR How the sampling rate conversion can be implemented? Explain priefly. What is Round-off Noise in IIR Digital Filters? Discuss its effects	Technique for $H(s) = \frac{2}{(s+1)(s+2)}$ T=1sec. Unit-IV Design a band pass filter which approximates the ideal filter with cut-off frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is M=5. Use the Hamming window function What are the desirable features of the window functions and explain the effects of it. OR Distinguish between IIR and FIR Filters Determine the coefficients of a linear phase FIR filter of length M=15 has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1; k = 0,1,2,3 \\ 0; k = 4,5,6,7 \end{cases}$ Unit-V Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n)$. Discuss the finite word length effects in FIR filters. OR How the sampling rate conversion can be implemented? Explain oriefly. What is Round-off Noise in IIR Digital Filters? Discuss its effects	Technique for $H(s) = \frac{2}{(s+1)(s+2)}$ T=1sec. Unit-IV Design a band pass filter which approximates the ideal filter with cut-off frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is $M=5$. Use the Hamming window function what are the desirable features of the window functions and explain the effects of it. OR Distinguish between IIR and FIR Filters Determine the coefficients of a linear phase FIR filter of length $M=15$ has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1; k = 0,1,2,3 \\ 0; k = 4,5,6,7 \end{cases}$ Unit-V Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n)$. Discuss the finite word length effects in FIR filters. OR How the sampling rate conversion can be implemented? Explain oriefly. What is Round-off Noise in IIR Digital Filters? Discuss its effects	Technique for $H(s) = \frac{2}{(s+1)(s+2)}$ T=1sec. Unit-IV Design a band pass filter which approximates the ideal filter with out-off frequencies at 0.2rad/sec and 0.3rad/sec. The filter order is $M=5$. Use the Hamming window function What are the desirable features of the window functions and explain the effects of it. OR Distinguish between IIR and FIR Filters Determine the coefficients of a linear phase FIR filter of length $M=15$ has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1; k = 0,1,2,3 \\ 0; k = 4,5,6,7 \end{cases}$ Unit-V Find impulse response of the system described by the difference equation $y(n) + y(n-1) - 0.2y(n-2) = x(n)$. Discuss the finite word length effects in FIR filters. OR How the sampling rate conversion can be implemented? Explain oriefly. What is Round-off Noise in IIR Digital Filters? Discuss its effects

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY (Autonomous)

MR-22

B.Tech. V Semester End Examinations (Electronics and Communication Engineering) (Model Question Paper)

Subject Title: Control Systems

Time: 3 hours

Subject Code: EC503PC

Max. Marks : 60

Note: Answer ALL Questions $Part-A (10 \times 1 = 10 Marks)$

Q. No.	Stem of the Question	M	L	CO	PO				
Unit-I									
1. a)	What are the different types of control systems	1	1	1	1				
1. b)	What is the effect of feedback on sensitivity	1	2	1	2				
	Unit-II								
1. c)	What is the difference between type and order of a system	1	1	2	2				
1. d)	Define centroid in Rootlocus	1	2	2	2				
Unit-III									
1. e)	Define Polar Plot	1	1	3	1				
1. f)	Define Resonant frequency	1	1	3	1				
	Unit-IV								
1. g)	What is the function P and I controller	1	1	4	2				
1. h)	What is phase lag compensator	1	2	4	2				
	Unit-V								
1. i)	What is meant by state of a control system	1	1	5	1				
1. j)	Define Controllability	1	2	5	1				

	Part-B (5 x 10=50 Marks)				
Q. No.	Stem of the Question	M	L	CO	PO
	Unit-I				
2. a)	Contrast differences between open loop and closed loop control systems	5	1	1	1
2. b)	Develop the differential equations governing the mechanical system as shown in below figure. Also find the transfer function X1(s)/F1(s) $ \frac{x_1}{K_2} \underbrace{M_1}_{D_1} \underbrace{M_2}_{D_2} \underbrace{M_3}_{D_4} \underbrace{M_3}_{D$	5	3	1	3
	OR				
2. c)	Define signal flow graph and explain Mason's Gain formula	5	1	1	2
2. d)	Find C/R for the given block diagram	5	3	1	3
	Unit-II		1		<u>I</u>
3. a)	Derive the time domain specifications of second order system with unit step input	5	2	2	2

3. b)	A unity feed-back system is characterized by an open loop T.F $G(s) = K/s(s+10)$ Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K, determine Ts, Tp and Mp for a unit step input.	5	4	2	3
	OR		1	ı	ı
3. c)	The characteristic polynomial of a system is $s^7+9s^6+24s^5+24s^4+24s^3+24s^2+23s+15=0$. Determine the location of	5	4	2	3
3. d)	roots on s-plane and hence the stability of the system Elucidate Root Locus techniques with suitable example	5	2	2	2
3. u)	Unit-III	3			
4. a)	Define Gain Margin and Phase Margin with respect to Bode plot	5	2	3	4
1. α)	Sketch the Bode plot of the given system				'
4. b)	G(s) = $\frac{20 (0.1s+1)}{S^2(0.2s+1)(0.02s+1)}$	5	4	3	4
	OR				
4. c)	Explain relation between time and frequency response analysis	5	2	3	2
4. d)	Sketch the polar plot for the following transfer function, Determine phase margin and gain margin.	5	4	3	4
	$G(s) = \frac{k}{s^2(1+s)(1+2s)}$				
	Unit-IV			I	
5. a)	What are the advantages and disadvantages in frequency domain analysis?	5	3	4	3
5. b)	Draw the electrical circuit diagram that represents the Lead-Lag compensator and explain in detail.	5	3	4	3
	OR				
5. c)	What is compensation? What are the different types of compensators?	5	1	4	2
5. d)	Discuss the procedural steps of lag compensation design in frequency domain	5	2	4	2
	Unit-V		1	ı	ı
6. a)	Explain about diagonalization with an example	5	2	5	2
6. b)	Obtain the state model of the given transfer function $\frac{Y(S)}{U(S)} = \frac{5}{s^2 + 6s + 7}$	5	3	5	3
	OR				
6. c)	State the properties of state transition matrix	5	2	5	2
6. d)	The state equations of a system are given by $ \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_{u, y} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}_{x}. $	5	4	5	3
	Find the property of controllability and observability				

Subject Code: MS501HS

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY (Autonomous)

B.Tech. V Semester End Examinations (Common to CE, EEE, ME, ECE, MCT, MME & CSM)

(Model Question Paper)

Subject Title: Business Economics and Financial Analysis

Time: 3 hours Max. Marks: 60

> Note: Answer ALL Questions Part-A $(10 \times 1 = 10 \text{ Marks})$

Q. No.	Stem of the Question	M	L	CO	PO			
	Unit-I							
1. a)	Define Business Economics	1	1	1	1			
1. b)	What is meant by National Income?	1	1	1	7			
	Unit-II							
1. c)	Describe Cross Elasticity of Demand	1	2	2	12			
1. d)	What are the Determinants of supply?	1	1	2	7			
	Unit-III							
1. e)	Explain Monopolistic Competition	1	2	3	7			
1. f)	What is meant by Marginal Cost?	1	1	3	11			
	Unit-IV							
1. g)	Describe Accounting Equation	1	2	4	11			
1. h)	What is meant by Materiality Convention?	1	1	4	8			
	Unit-V							
1. i)	Explain Liquidity	1	2	5	11			
1. j)	List Profitability ratios	1	1	5	11			

Part-B (5 x 10=50 Marks)										
Q. No.	Stem of the Question	M	L	CO	PO					
Unit-I										
2. a)	Explain different sources of capital.	5	2	1	1					
2. b)	Describe the advantages and disadvantages of sole proreitorship.	5	2	1	7					
	OR									
2. c)	Explain the nature and scope of Business Economics.	5	2	1	7					
2. d)	Differentiate between Private Limited Companies and Public Limited Companies	5	4	1	7					
	Unit-II	1	I							
3. a)	Describe Law of Demand and its exceptions	5	2	2	11					
3. b)	Explain the Determinants of Supply and supply function.	5	2	2	7					
	OR2				•					
3. c)	The quantity demanded for the product X is 30 units, when the price is	5	3	2	2					
	Rs.15. The quantity demanded increased to 40 units, as price decreased									
	to Rs. 10. Compute Price Elasticity of demand.									
3. d)	Explain different methods of Demand Forecasting	5	2	2	12					
	Unit-III									
4. a)	How can a producer determine the least-cost combination of inputs?	5	1	3	3					
4. b)	Differentiate between perfect competition and monopoly competition.	5	4	3	8					
	OR									
4. c)	Explain Law of Variable Proportions with the help of graph.	5	2	3	7					
4. d)	Describe various Pricing strategies used by modern business	5	2	3	5					
	organizations.									
	Unit-IV	_								
5. a)	Classify the following accounts into various (Personal, Real or	5	2	4	11					
	Nominal) types of accounts.									
	i) Salary account									
	ii) Outstanding wages account									
	iii) Rent account									

5. b)	Jan 1, 2 Jan 3, 2 Jan 8, 2 Jan 30,	Bank account Insurance prepa Drawings accou Bad debts accou Machinery accou Furniture accoun Patents account ise the following tra 2021 Commenced w 2021 Purchased Go 2021 Sold Goods to 2021 Salaries paid 2021 Rent paid	unt ount ount int ansactions: with Cash oods worth	Rs	s. 1,10,000 s. 40,000		5	3	4	11
				0						
5. c)	Explain	Double Entry Syst	em and its	adva	antages		5	2	4	11
5. d)	Prepare informa						5	3	4	11
				ce a	s on 31.03.202					
			iculars		Debit (₹)	Credit(₹)				
		Capital			40,000	1,00,000				
		Purchases			40,000					
		Furniture Interest rece	ivad.		30,000	2,000				
		Cash	erveu		15,000	3,000				
		Debtors			27,000					
		Office Statio	onerv		3,000					
		Machinery	<i>j</i>		70,000					
		Bank Loan			,	5,000				
		Bills Payabl	e			2,000				
		Opening Sto			10,000	,				
		Sales			,	90,000				
		Wages paid			600					
		Salaries paid	1		2,500					
		Electricity c			1,200					
		Insurance pa	aid		700					
			To	otal	2,00,000	2,00,000				
		Adjustments:								
		i) Closing Sto			20/					
		ii) Depreciate Iiii) Salaries out			J% p.a.					
		m, Saiaries Out								
					it-V					
6. a)		counting ratios are			ter-firm compa	rison.	5	1	5	10
6. b)		ne given Balance Sh	ieet calculat	te:			5	3	5	10
		Debt-equity ratio Liquidity ratio								
		Fixed assets to curr	ent assets r	atio	and					
		Fixed assets to Net								
			1 =			Balance Sheet				
		Liabilities	Rs.		sets	Rs.				
		Share Capital	1,00,00	Go	odwill	60,000				
			U			00,000				

		Retained	10,000	Machinery	1.00,00				
		Earnings Profit and loss	10,000	Stock	0				
		a/c	40,000	Stock	30,000				
		Secured loans	10,000	Debtors	20,000				
		Scource found	80,000	Bestons	70,000				
	-	Creditors	·	Furniture	,				
			40,000		10,000				
		Provision for	•	Cash	20.000				
		taxation	30,000		30,000				
			3,00,00		3,00,00				
			U		0				
				OR	Ŭ				<u> </u>
6. c)	Differer	ntiate Liquidity rat	ios and leve			5	4	5	11
6. d)		<u> </u>		mited as on 31-03-	2018 was as	5	3	5	11
	1	follows:							
		Liabilities	Amount	Assets	Amount				
			(₹)		(₹)				
		Equity Share	1,40,00		1,24,000				
		Capital	1,28,00		1,30,000				
		Reserves and	1,32,00		26,000				
		Surplus	26,00	U	2,000				
		Debentures	4,00		22,000				
		Creditors	6,00		4,000				
		Bank overdraft	2,00		12,000				
		Provision for	2,00		65,000				
		Taxation:		Investments	55,000				
		Outstanding	440,00		440,000				
		Expenses		Cash					
				I Cook of Donla	1				1
	[Bills payable		Cash at Bank					

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY (Autonomous)

MR-22

B. Tech. V Semester End Examinations (Electronics and Communication Engineering)

(Model Question Paper)

Subject Title: Data Communications and Networking

Time: 3 hours

Subject Code: EC512PE Max. Marks : 60

Note: Answer ALL Questions $Part-A (10 \times 1 = 10 Marks)$

Q. No.	Stem of the Question		L	CO	PO		
Unit-I							
1. a)	Name the layers in the OSI Model.		1	1	1		
1. b)	Provide examples of criteria that are commonly used in network assessment.		2	1	2		
Unit-II							
1. c)	List the services provided by the Data Link Layer	1	2	2	2		
1. d)	Differentiate between error detection and error correction	1	3	2	3		
Unit-III							
1. e)	What is Random Early Detection?	1	2	3	3		
1. f)	List the types of switching used inside a Router		1	3	4		
Unit-IV							
1. g)	Explain the functionalities of Transport Layer	1	2	4	4		
1. h)	What is Socket address? Explain how it is related to IP address	1	1	4	3		
Unit-V							
1. i)	Briefly explain about DNS protocol.	1	2	4	4		
1. j)	What is an SMTP protocol?	1	2	3	2		

Part-B (5 x 10=50 Marks)

CALLED (5 X 10=30 MIURKS)								
Q. No.	Stem of the Question	M	L	CO	PO			
Unit-I								
2. a)	Explain the functionality of the Data Link layer and the Network	5	2	1	1			
	Layer in the OSI model.	3		1	1			
2. b)	Explain about the TCP/IP architecture with a suitable diagram	5	3	1	2			
OR								
2. c)	Compare and contrast the star and mesh network topologies.	5	4	1	2			
3 4)	Discuss about the characteristics and challenges encountered in a	_	2	1	1			
2. d)	Wireless Link.	5						
Unit-II								
3. a)	What are the different types of error detection methods?	5	2	2	2			
2.1)	Explain the CRC error detection technique using generator	5	3	2				
3. b)	polynomial x^4+x^3+1 and data 11100011.				2			
OR								
3. c)	Differentiate between Pure ALOHA and Slotted ALOHA	5	2	2	2			
3. d)	What is controlled access? Explain with an example.		3	2	1			
Unit-III								
4. a)	Explain about the various Network Service Models.		2	3	3			
4. b)	Compare and contrast the Virtual Circuit and Datagram networks		3	3	2			
OR								
4. c)	Explain the format of the IPv4 datagram.		2	3	2			
4. d)	Describe the addressing scheme used in IPv4		3	3	3			
Unit-IV								
5 -)	Explain how flow control and buffering would be handled by	5	3	2	4			
5. a)	transport layer))	2	4			
5. b)	Demonstrate three way handshake connection establishment in TCP.		2	3	3			
OR								
5. c)	Differentiate between UDP and TCP.	5	2	3	3			

5. d)	What is purpose of ICMP? Explain its messages in detail.		1	1	4		
	Unit-V						
6. a)	Explain the salient features and functionality of the SMTP protocol.		2	2	4		
6. b)	Write a short note on HTTP.		3	3	4		
OR							
6. c)	What is FTP? What are the three transmission modes in FTP? Discuss.	5	3	3	3		
6. d)	Write a short note on SMTP.	5	2	2	4		